PROSPECTS OF LASSA FEVER CANDIDATE VACCINES
DOI:
https://doi.org/10.21010/Ajid%20v16i2S.6Keywords:
lassa fever, innovation, clinical trials, vaccineAbstract
Background: Lassa fever is an acute viral haemorrhagic disease caused by the Lassa virus (LASV). It is endemic in West Africa and infects about 300,000 people each year, leading to approximately 5000 deaths annually. The development of the LASV vaccine has been listed as a priority by the World Health Organization since 2018. Considering the accelerated development and availability of vaccines against COVID-19, we set out to assess the prospects of LASV vaccines and the progress made so far.
Materials and Methods: We reviewed the progress made on twenty-six vaccine candidates listed by Salami et al. (2019) and searched for new vaccine candidates through Google Scholar, PubMed, and DOAJ from June to July 2021. We searched the articles published in English using keywords that included “vaccine” AND “Lassa fever” OR “Lassa virus” in the title/abstract.
Results: Thirty-four candidate vaccines were identified – 26 already listed in the review by Salami et al. and an additional 8, which were developed over the last seven years. 30 vaccines are still in the pre-clinical stage while 4 of them are currently undergoing clinical trials. The most promising candidates in 2019 were vesicular stomatitis virus-vectored vaccine and live-attenuated MV/LASV vaccine; both had progressed to clinical trials.
Conclusions: Despite the focus on COVID-19 vaccines since 2020, LASV vaccine is under development and continues to make impressive progress, hence more emphasis should be put into exploring further clinical studies related to the most promising types of vaccines identified.
References
2018 Lassa Fever Outbreak in Nigeria: NCDC Situation Report #52 - 31 December 2018 - Nigeria. (n.d.). Retrieved December 4, 2021, from https://reliefweb.int/report/nigeria/2018-lassa-fever-outbreak-nigeria-ncdc-situation-report-52-31-december-2018.
Abreu-Mota, T., Hagen, K. R., Cooper, K., Jahrling, P. B., Tan, G., Wirblich, C., Johnson, R. F. and Schnell, M. J. (2018). Non-neutralizing antibodies elicited by recombinant Lassa-Rabies vaccine are critical for protection against Lassa fever. Nature Communications, 9(1): 4223. https://doi.org/10.1038/s41467-018-06741-w.
Asogun, D. A., Günther, S., Akpede, G. O., Ihekweazu, C., and Zumla, A. (2019). Lassa Fever: Epidemiology, Clinical Features, Diagnosis, Management and Prevention. Infectious Disease Clinics of North America, 33:(4): 933–951. https://doi.org/10.1016/j.idc.2019.08.002.
A Trial to Evaluate the Optimal Dose of MV-LASV (V182-001). (n.d.). Retrieved December 4, 2021, from https://clinicaltrials.gov/ct2/show/NCT04055454.
Bernasconi, V., Kristiansen, P. A., Whelan, M., Román, R. G., Bettis, A., Yimer, S. A., Gurry, C., Andersen, S. R., Yeskey, D., Mandi, H., Kumar, A., Holst, J., Clark, C., Cramer, J. P., Røttingen, J.-A., Hatchett, R., Saville, M. and Norheim, G. (2020). Developing vaccines against epidemic-prone emerging infectious diseases. Bundesgesundheitsblatt, Gesundheitsforschung, Gesundheitsschutz, 63(1), 65–73. https://doi.org/10.1007/s00103-019-03061-2.
Branco, L. M., Grove, J. N., Geske, F. J., Boisen, M. L., Muncy, I. J., Magliato, S. A., Henderson, L. A., Schoepp, R. J., Cashman, K. A., Hensley, L. E. and Garry, R. F. (2010). Lassa virus-like particles displaying all major immunological determinants as a vaccine candidate for Lassa hemorrhagic fever. Virology Journal, 7.: 279. https://doi.org/10.1186/1743-422X-7-279.
Cai, Y., Iwasaki, M., Motooka, D., Liu, D. X., Yu, S., Cooper, K., Hart, R., Adams, R., Burdette, T., Postnikova, E. N., Kurtz, J., St Claire, M., Ye, C., Kuhn, J. H., Martínez-Sobrido, L. and de la Torre, J. C. (2020b). A Lassa Virus Live-Attenuated Vaccine Candidate Based on Rearrangement of the Intergenic Region. mBio, 11(2). https://doi.org/10.1128/mBio.00186-20.
Cai, Y., Ye, C., Cheng, B., Nogales, A., Iwasaki, M., Yu, S., Cooper, K., Liu, D. X., Hart, R., Adams, R., Brady, T., Postnikova, E. N., Kurtz, J., St Claire, M., Kuhn, J. H., de la Torre, J. C. and Martínez-Sobrido, L. (2020a). A Lassa Fever Live-Attenuated Vaccine Based on Codon Deoptimization of the Viral Glycoprotein Gene. mBio, 11(1). https://doi.org/10.1128/mBio.00039-20
Carnec, X., Mateo, M., Page, A., Reynard, S., Hortion, J., Picard, C., Yekwa, E., Barrot, L., Barron, S., Vallve, A., Raoul, H., Carbonnelle, C., Ferron, F. and Baize, S. (2018). A Vaccine Platform against Arenaviruses Based on a Recombinant Hyperattenuated Mopeia Virus Expressing Heterologous Glycoproteins. Journal of Virology, 92(12). https://doi.org/10.1128/JVI.02230-17
Cashman, K. A., Wilkinson, E. R., Shaia, C. I., Facemire, P. R., Bell, T. M., Bearss, J. J., Shamblin, J. D., Wollen, S. E., Broderick, K. E., Sardesai, N. Y. and Schmaljohn, C. S. (2017). A DNA vaccine delivered by dermal electroporation fully protects cynomolgus macaques against Lassa fever. Human Vaccines & Immunotherapeutics, 13(12), 2902–2911. https://doi.org/10.1080/21645515.2017.1356500
Chappell, K. J., Mordant, F. L., Li, Z., Wijesundara, D. K., Ellenberg, P., Lackenby, J. A., Cheung, S. T. M., Modhiran, N., Avumegah, M. S., Henderson, C. L., Hoger, K., Griffin, P., Bennet, J., Hensen, L., Zhang, W., Nguyen, T. H. O., Marrero-Hernandez, S., Selva, K. J., Chung, A. W., … Munro, T. P. (2021). Safety and immunogenicity of an MF59-adjuvanted spike glycoprotein-clamp vaccine for SARS-CoV-2: a randomised, double-blind, placebo-controlled, phase 1 trial. The Lancet Infectious Diseases, 21(10): 1383–1394. https://doi.org/10.1016/S1473-3099(21)00200-0
Cheng, B. Y. H., Nogales, A., de la Torre, J. C. and Martínez-Sobrido, L. (2017). Development of live-attenuated arenavirus vaccines based on codon deoptimization of the viral glycoprotein. Virology, 501: 35–46. https://doi.org/10.1016/j.virol.2016.11.001
Cheng, B. Y. H., Ortiz-Riaño, E., de la Torre, J. C. and Martínez-Sobrido, L. (2015). Arenavirus genome rearrangement for the development of live attenuated vaccines. Journal of Virology, 89(14): 7373–7384. https://doi.org/10.1128/JVI.00307-15
Cross, R. W., Xu, R., Matassov, D., Hamm, S., Latham, T. E., Gerardi, C. S., Nowak, R. M., Geisbert, J. B., Ota-Setlik, A., Agans, K. N., Luckay, A., Witko, S. E., Soukieh, L., Deer, D. J., Mire, C. E., Feldmann, H., Happi, C., Fenton, K. A., Eldridge, J. H. and Geisbert, T. W. (2020). Quadrivalent VesiculoVax vaccine protects nonhuman primates from viral-induced hemorrhagic fever and death. The Journal of Clinical Investigation, 130(1): 539–551. https://doi.org/10.1172/JCI131958
Ewer, K., Sebastian, S., Spencer, A. J., Gilbert, S., Hill, A. V. S. and Lambe, T. (2017). Chimpanzee adenoviral vectors as vaccines for outbreak pathogens. Human Vaccines & Immunotherapeutics, 13(12): 3020–3032. https://doi.org/10.1080/21645515.2017.1383575
Fischer, R. J., Purushotham, J. N., van Doremalen, N., Sebastian, S., Meade-White, K., Cordova, K., Letko, M., Jeremiah Matson, M., Feldmann, F., Haddock, E., LaCasse, R., Saturday, G., Lambe, T., Gilbert, S. C. and Munster, V. J. (2021). ChAdOx1-vectored Lassa fever vaccine elicits a robust cellular and humoral immune response and protects guinea pigs against lethal Lassa virus challenge. NPJ Vaccines, 6(1): 32. https://doi.org/10.1038/s41541-021-00291-x
Geisbert, T. W., Jones, S., Fritz, E. A., Shurtleff, A. C., Geisbert, J. B., Liebscher, R., Grolla, A., Ströher, U., Fernando, L., Daddario, K. M., Guttieri, M. C., Mothé, B. R., Larsen, T., Hensley, L. E., Jahrling, P. B. and Feldmann, H. (2005). Development of a new vaccine for the prevention of Lassa fever. PLoS Medicine, 2(6): e183. https://doi.org/10.1371/journal.pmed.0020183
GEO-LM01 Lassa Fever Vaccine. (n.d.). Retrieved December 4, 2021, from https://www.precisionvaccinations.com/vaccines/geo-lm01-lassa-fever-vaccine
Hallam, H. J., Hallam, S., Rodriguez, S. E., Barrett, A. D. T., Beasley, D. W. C., Chua, A., Ksiazek, T. G., Milligan, G. N., Sathiyamoorthy, V. and Reece, L. M. (2018). Baseline mapping of Lassa fever virology, epidemiology and vaccine research and development. NPJ Vaccines, 3: 11. https://doi.org/10.1038/s41541-018-0049-5
Health Newswire. (2021, March 24). Kineta Presents Clinical Study Results of LHF-535 at the International Conference on Antiviral Research (ICAR). https://healthnewswire.com/press-release/kineta-presents-clinical-study-results-of-lhf-535-at-the-international-conference-on-antiviral-research-icar/#
Henao-Restrepo, A. M., Longini, I. M., Egger, M., Dean, N. E., Edmunds, W. J., Camacho, A., Carroll, M. W., Doumbia, M., Draguez, B., Duraffour, S., Enwere, G., Grais, R., Gunther, S., Hossmann, S., Kondé, M. K., Kone, S., Kuisma, E., Levine, M. M., Mandal, S., … Røttingen, J.-A. (2015). Efficacy and effectiveness of an rVSV-vectored vaccine expressing Ebola surface glycoprotein: interim results from the Guinea ring vaccination cluster-randomised trial. The Lancet, 386(9996), 857–866. https://doi.org/10.1016/S0140-6736(15)61117-5
IAVI.ORG. (n.d.). EDCTP and CEPI funding moves IAVI’s Lassa fever vaccine candidate into advanced clinical development. Retrieved December 4, 2021, from https://www.iavi.org/news-resources/press-releases/2021/edctp-and-cepi-funding-moves-iavi-s-lassa-fever-vaccine-candidate-into-advanced-clinical-development.
Ibukun, F. I. (2020). Inter-Lineage Variation of Lassa Virus Glycoprotein Epitopes: A Challenge to Lassa Virus Vaccine Development. Viruses, 12(4). https://doi.org/10.3390/v12040386
Ilori, E. A., Furuse, Y., Ipadeola, O. B., Dan-Nwafor, C. C., Abubakar, A., Womi-Eteng, O. E., Ogbaini-Emovon, E., Okogbenin, S., Unigwe, U., Ogah, E., Ayodeji, O., Abejegah, C., Liasu, A. A., Musa, E. O., Woldetsadik, S. F., Lasuba, C. L. P., Alemu, W., Ihekweazu, C. and Nigeria Lassa Fever National Response Team. (2019). Epidemiologic and Clinical Features of Lassa Fever Outbreak in Nigeria, January 1-May 6, 2018. Emerging Infectious Diseases, 25(6): 1066–1074. https://doi.org/10.3201/eid2506.181035
Jiang, J., Ramos, S. J., Bangalore, P., Elwood, D., Cashman, K. A., Kudchodkar, S. B., Schultheis, K., Pugh, H., Walters, J., Tur, J., Yan, J., Patel, A., Muthumani, K., Schmaljohn, C. S., Weiner, D. B., Humeau, L. M. and Broderick, K. E. (2021). Multivalent DNA Vaccines as A Strategy to Combat Multiple Concurrent Epidemics: Mosquito-Borne and Hemorrhagic Fever Viruses. Viruses, 13(3). https://doi.org/10.3390/v13030382
Johnson, D. M., Jokinen, J. D. and Lukashevich, I. S. (2019). Attenuated Replication of Lassa Virus Vaccine Candidate ML29 in STAT-1-/- Mice. Pathogens, 8(1). https://doi.org/10.3390/pathogens8010009
Kainulainen, M. H., Spengler, J. R., Welch, S. R., Coleman-McCray, J. D., Harmon, J. R., Klena, J. D., Nichol, S. T., Albariño, C. G. and Spiropoulou, C. F. (2018). Use of a Scalable Replicon-Particle Vaccine to Protect Against Lethal Lassa Virus Infection in the Guinea Pig Model. The Journal of Infectious Diseases, 217(12): 1957–1966. https://doi.org/10.1093/infdis/jiy123
Keïta, M., Kizerbo, G. A., Subissi, L., Traoré, F. A., Doré, A., Camara, M. F., Barry, A., Pallawo, R., Baldé, M. O., Magassouba, N., Djingarey, M. H. and Fall, I. S. (2019). Investigation of a cross-border case of Lassa fever in West Africa. BMC Infectious Diseases, 19(1): 606. https://doi.org/10.1186/s12879-019-4240-8
Kennedy, E. M., Dowall, S. D., Salguero, F. J., Yeates, P., Aram, M. and Hewson, R. (2019). A vaccine based on recombinant modified Vaccinia Ankara containing the nucleoprotein from Lassa virus protects against disease progression in a guinea pig model. Vaccine, 37(36): 5404–5413. https://doi.org/10.1016/j.vaccine.2019.07.023
Labs, G. V. (n.d.). GeoVax Labs, Inc Factsheet. https://geovax.com/images/201014_GeoVax_Fact_Sheet.pdf
Lukashevich, I. S. and Pushko, P. (2016). Vaccine platforms to control Lassa fever. Expert Review of Vaccines, 15(9): 1135–1150. https://doi.org/10.1080/14760584.2016.1184575
Madu, I. G., Files, M., Gharaibeh, D. N., Moore, A. L., Jung, K.-H., Gowen, B. B., Dai, D., Jones, K. F., Tyavanagimatt, S. R., Burgeson, J. R., Korth, M. J., Bedard, K. M., Iadonato, S. P. and Amberg, S. M. (2018). A potent Lassa virus antiviral targets an arenavirus virulence determinant. PLoS Pathogens, 14(12), e1007439. https://doi.org/10.1371/journal.ppat.1007439.
Mateo, M., Reynard, S., Carnec, X., Journeaux, A., Baillet, N., Schaeffer, J., Picard, C., Legras-Lachuer, C., Allan, R., Perthame, E., Hillion, K.-H., Pietrosemoli, N., Dillies, M.-A., Barrot, L., Vallve, A., Barron, S., Fellmann, L., Gaillard, J.-C., Armengaud, J., … Baize, S. (2019). Vaccines inducing immunity to Lassa virus glycoprotein and nucleoprotein protect macaques after a single shot. Science Translational Medicine, 11(512). https://doi.org/10.1126/scitranslmed.aaw3163
Public Health England. (n.d.). LassaVacc. UK Reserach and Innovation. Retrieved December 4, 2021, from https://gtr.ukri.org/projects?ref=972223
Purushotham, J., Lambe, T. and Gilbert, S. C. (2019). Vaccine platforms for the prevention of Lassa fever. Immunology Letters, 215: 1–11. https://doi.org/10.1016/j.imlet.2019.03.008
Pushko Peter, Geisbert Joan, Parker Michael, Jahrling Peter, and Smith Jonathan. (2001). Individual and Bivalent Vaccines Based on Alphavirus Replicons Protect Guinea Pigs against Infection with Lassa and Ebola Viruses. Journal of Virology, 75(23): 11677–11685. https://doi.org/10.1128/JVI.75.23.11677-11685.2001.
Ramsauer, K., Schwameis, M., Firbas, C., Müllner, M., Putnak, R. J., Thomas, S. J., Desprès, P., Tauber, E., Jilma, B. and Tangy, F. (2015). Immunogenicity, safety, and tolerability of a recombinant measles-virus-based chikungunya vaccine: a randomised, double-blind, placebo-controlled, active-comparator, first-in-man trial. The Lancet Infectious Diseases, 15(5): 519–527. https://doi.org/10.1016/S1473-3099(15)70043-5
Salami, K., Gouglas, D., Schmaljohn, C., Saville, M. and Tornieporth, N. (2019). A review of Lassa fever vaccine candidates. Current Opinion in Virology, 37: 105–111. https://doi.org/10.1016/j.coviro.2019.07.006
Voysey, M., Clemens, S. A. C., Madhi, S. A., Weckx, L. Y., Folegatti, P. M., Aley, P. K., Angus, B., Baillie, V. L., Barnabas, S. L., Bhorat, Q. E., Bibi, S., Briner, C., Cicconi, P., Collins, A. M., Colin-Jones, R., Cutland, C. L., Darton, T. C., Dheda, K., Duncan, C. J. A., … Oxford COVID Vaccine Trial Group. (2021). Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. The Lancet, 397(10269): 99–111. https://doi.org/10.1016/S0140-6736(20)32661-1
Wagner, R. (2018, August 29). Trivalent Lassa, Ebola and Marburg viral vaccine (Tri-LEMvac). University of Regensburg Institute of Medical Microbiology and Hygiene Molecular Microbiology (Virology). http://www.wagner-lab.de/research-projects/past-projects/tri-lemvac.html
World Health Organization. (2019). Lassa Fever Research and Development Roadmap. Lassa Fever - Advanced Draft, Jan, 1–30. https://cdn.who.int/media/docs/default-source/blue-print/lassafever_rdblueprint_roadmap_advanceddraftjan2019.pdf?sfvrsn=dc00b058_3&download=true
World Health Organization (2021). Lassa Fever. Retrieved December 4, 2021, from https://www.who.int/news-room/fact-sheets/detail/lassa-fever
Zapata, J. C., Poonia, B., Bryant, J., Davis, H., Ateh, E., George, L., Crasta, O., Zhang, Y., Slezak, T., Jaing, C., Pauza, C. D., Goicochea, M., Moshkoff, D., Lukashevich, I. S. and Salvato, M. S. (2013). An attenuated Lassa vaccine in SIV-infected rhesus macaques does not persist or cause arenavirus disease but does elicit Lassa virus-specific immunity. Virology Journal, 10: 52. https://doi.org/10.1186/1743-422X-10-52.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 African Journal of Infectious Diseases (AJID)
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright: Creative Commons Attribution CC BY This license lets others distribute, remix, tweak, and build upon your work, even commercially, as long as they credit you for the original creation. This is the most accommodating of licenses offered. Recommended for maximum dissemination and use of licensed materials. View License Deed | View Legal Code Authors can also self-archive their manuscripts immediately and enable public access from their institution's repository. This is the version that has been accepted for publication and which typically includes author-incorporated changes suggested during submission, peer review and in editor-author communications.