EFFECT OF A SHORT PERIOD WHOLE BODY VIBRATION WITH 10 HZ ON BLOOD BIOMARKERS IN WISTAR RATS
DOI:
https://doi.org/10.21010/ajtcam.v14i4S.2Keywords:
whole-body vibration, biomarkers, Wistar rats, oscillating/vibratory platform, mechanical vibrationAbstract
Background: Exposure to whole body vibration exercises (WBVE), besides some biological effects, causes alterations in the concentration of some blood biomarkers. The aim of this study is to evaluate the action of vibration (10 Hz) of WBVE on the concentration of blood biomarkers in Wistar rats. Materials and Methods: Wistar rats were divided in 2 groups. The experimental group (EG) was subjected to vibrations of 10Hz (one min per day, one week, total time of seven min), while the control group (CG) has not experienced vibration. Samples of whole blood were drawn for biochemical analysis of the concentration of total cholesterol, triglycerides, HDL, LDL, VLDL, glucose, CPK, albumin, alkaline phosphates, TGP, TGO, γGT, lipase, amylase, urea and creatinine. Results: White blood cell count and a platelet-hemogram were also performed. Significant (p<0.05) increase in TGP, TGO and white blood cells and decrease in LDL concentration was found after exposure of 10Hz mechanical vibration. Conclusion: Although these findings were obtained with rats, they might contribute to try to understand better these mechanisms that occur following exposure to a frequency of 10Hz.Downloads
Published
How to Cite
Issue
Section
License
Copyright: Creative Commons Attribution CC.
This license lets others distribute, remix, tweak, and build upon your work, even commercially, as long as they credit you for the original creation. This is the most accommodating of licenses offered. Recommended for maximum dissemination and use of licensed materials. View License Deed | View Legal Code Authors can also self-archive their manuscripts immediately and enable public access from their institution's repository. This is the version that has been accepted for publication and which typically includes author-incorporated changes suggested during submission, peer review and in editor-author communications.