# Cyril-Olutayo et al., Afr., J. Complement Altern Med. (2020) 17 (2): 37-54 https://doi.org/10.21010/ajtcan.v17i2.4

# ETHNO MEDICINAL SURVEY AND EVALUATION OF TWO RECIPES USED IN MANAGING SICKLE CELL DISEASE IN ILE-IFE COMMUNITY OF OSUN-STATE, NIGERIA.

# \*Cyril-Olutayo Mojisola Christianah, Dorcas O. Ajayi and Olayinka O Odunowo

Drug Research and Production Unit, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Nigeria.

# \*Corresponding author E-mail: mojiolutayo@gmail.com

<u>Article History</u> Received: May 7<sup>th</sup> 2020 Revised Received: July 16<sup>th</sup> 2020 Accepted: July 18<sup>th</sup> 2020 Published Online:Nov. 18<sup>th</sup> 2020

# Abstract

**Background**: Ethno-medicinal survey of herbal recipes used in managing sickle cell disease in Ile-Ife, Osun-State, Nigeria was carried out and two recipes selected for antisickling studies.

**Materials and Methods**: Information was obtained using semi-structured questionnaires and open interview from respondents consisting of herb sellers, traditional medical practitioners, artisans and traders in two local government areas of Ife. Two recipes from the survey were selected for antisickling studies. Aqueous extract of each recipe was obtained by boiling the constituents in water for 1 h while the hydro ethanolic extracts were obtained by maceration in 70% ethanol for 72 h. Inhibitory and reversal antisickling properties were assessed using sodium metabisulphite as deoxygenating agent, vanillic acid (inhibitory agent), para-hydroxybenzoic (reversal agent) acid as positive controls while phosphate buffered saline was employed as negative control.

**Results**: Fifty four recipes comprising forty six plants were obtained from the ethno-medicinal survey. The respondents comprised of 44% men and 56% women. The most frequently and commonly used plants belong to family Fabaceae. The inhibitory and reversal activities of the aqueous extract of recipe 1 ( $81.37\pm1.09\%$ ,  $88.56\pm1.38\%$  respectively) were significantly (p < 0.05) higher than recipe 2 ( $78.51\pm0.78\%$  inhibition and  $79.8\pm2.16\%$  reversal) at same concentration. The hydro-alcoholic extracts of recipes 1 and 2 gave highest inhibitory activities at 0.5 mg/mL (69.25  $\pm1.30\%$  and  $68.28\pm2.78\%$  respectively).

**Conclusion**: This study documented the medicinal plants and recipes used in Ile-Ife for managing sickle cell disease, and validated the ethno-medicinal claim of two recipes.

Keywords: Medicinal plants, Ethno-medicinal survey, Sickle cell disorder, Ile-Ife

Abbreviations: SCD: Sickle Cell Disease, Hb: Haemoglobin, PHBA: p-hydroxy benzoic acid, PBS: Phosphate buffered saline

## Introduction

Sickle cell disease (SCD) is a hereditary blood disorder and the common form of it is sickle cell anaemia which was first described by Herrick in 1910 (Herrick, 2001). The gene of the individual codes for the synthesis of abnormal haemoglobin Hb S, which has beta 6 valine instead of beta 6 glutamic acid found in normal haemoglobin Hb A (Murayama 1968). The red blood cells of sickle cell individuals have "sickle" shape instead of the normal round or disc shape, which affect the movement of the red blood cells within the blood vessels causing less oxygen to be circulated (Lowe and Anderson, 2015). The clinical manifestation of the disorder is prominent in patients homozygous for the S gene (Hb SS), while heterozygotes with abnormal gene such as SC, Thalassemia or SF exhibit a milder form of the disorder (Galanello and Origa, 2010). Sickle cell anaemia individuals suffer characteristically from persistent ulcer, an enlarged spleen and painful swellings of the digits and joint (Isaac - Sodeye 1975, Ballas *et al.*, 2012).

In Africa, about 12,000 infants are born each year with sickle cell disease and in rural villages as few as 2% of individuals with SCD survive beyond age of five years (Flemming, 1989). The prevalence of sickle cell trait ranges between 10 and 45% in various parts of sub-Saharan Africa (WHO, 2013). The distribution of Hb S gene worldwide also seems to overlap with areas where the malaria parasite is endemic, especially in tropical Africa, the Middle East, and Asia (Piel *et al.*, 2010).

Ile-Ife is an ancient Yoruba city in South-Western Nigeria. The city is located in the present state of Osun and is made up of Ife central and Ife East local government areas. Ile-Ife is on latitude 7°28<sup>1</sup> and 7°45<sup>1</sup> N and on longitude 4°30<sup>1</sup>E and 4°34<sup>1</sup>E (Olupona, 2011). It is within the tropical savann\a climate zone of West Africa. It has average

rainfall of 1,000–1,250 mm (39–49 in) usually from March to October and a mean relative humidity of 75% to 100% (Ajala and Olayiwola, 2013). According to Yoruba mythology life began at Ile-Ife. The town is predominantly characterized with several traditional believes and traditional religion is widely and proudly practiced in it. Ife is an ancient town in Yoruba history and is regarded as the cradle of civilization. According to Yoruba tradition, Ife is the ancestral and spiritual home for all Yoruba. It is believed that the creation of the world started from Ife. Hence, it is popularly referred to as *'Land of the Source''* (Broadus, 2018). The people of Ile-Ife believe so much in traditional medicine and they depend on it as their primary healthcare remedy for almost all their ailments despite the presence of the Obafemi Awolowo Teaching Hospital Complex. It had been observed that hospitalized Ife people and those on orthodox medication often combine it with various herbal remedies. The inhabitants of Ile-Ife depend so much on herbs that a market popularly called Oja- Ife, located at the central part of the town almost beside the King Ooni's palace, is mainly for the sale of herbs and other traditional elements commonly used by traditional medical practitioners. There is hardly any community in Ile-Ife without at least one or more traditional practitioner who attend to people's spiritual and medical needs (Ajala and Olayiwola, 2013).

Sickle cell disease has gained prominence in its management from both traditional and orthodox medical practices. Although the only cure available is haematopoietic stem cell transplantation which is very expensive and comes with varying complications, orthodox drugs such as hydroxyurea, vitamin B complex and folic acid are commonly used as palliative (Bhatia and Sheth 2015). Traditionally, some plants such as *Mangifera indica, Adansonia digitata, Cajanus cajan, Carica papaya, Moringa oleifera, Zanthoxyllum xanthoxyloides* (Sofowora, 1979, Adesanya *et al.*, 1988, Shah *et al.*, 2010, Ogunyemi *et al.*, 2008, Imaga *et al.*, 2009, Cyril-Olutayo *et al.*, 2018) amongst others have been found to have antisickling properties and are being used to manage the disease. In this study, ethno medicinal survey of herbal recipes used traditionally in the two local government areas of Ile-Ife, Osun State for the management of sickle cell anaemia was carried out with the aim of identifying medicinal plants and evaluate two of the recipes for antisickling properties.

#### Materials and Methods Ethno medicinal Survey

Semi-structured questionnaires were used to obtain ethno medicinal data from different categories of respondents which include traditional medical practitioners, herb sellers, artisans, traders, civil servants, on indigenous plants used locally for the management of sickle cell anaemia in Ile-Ife.

Although, English language was used to prepare the questionnaire, interviews were conducted in Yoruba language where necessary. Three major sections were captured in the questionnaire; one covered demographic data like gender, age, occupational level, source of knowledge acquisition of herbal practice; Two included respondents' folk classification of sickle cell disease and other questions assessing their knowledge of the disease including diagnosis methods, and symptoms; While three involved information on medicinal plants, recipes used for managing sickle cell disease, mode of preparation and administration.

#### Collection of Plant Materials for antisickling assay

Two recipes, containing different plant parts, used locally for the treatment of sickle cell anaemia in Ile-Ife, Osun-State were selected and evaluated in this study. The plant materials: *Nauclea latifolia* (leaves and root), *Olax subscorpiodea* (root) *Mangifera indica* (stem bark), *Khaya senegalensis* (root) were collected from the Obafemi Awolowo University, Biological garden, while *Securidaca longipenduuculata* (root), *Xylopia aethiopica* (fruit) *Bulhozia coriacea* (fruit) and *Garcinia kola* (stem bark) were purchased from the Ife local market. The botanical identification was carried out by Mr. Ogunlowo and voucher specimens deposited in the Herbarium, Department of Pharmacognosy, Faculty of Pharmacy (FPI, included in the online edition of index Herbariorium), Obafemi Awolowo University, Ile-Ife with the numbers FPI 2194 (*Mangifera indica*), FPI 2195 (*Khaya senegalensis*), FPI 2151 (*Olax subscorpiodea*) and FPI 2152 (*Nauclea latifolia*).

#### **Preparation of Extracts**

Fresh leaves were air dried in a screen house, while roots and barks, after being washed and cleaned, were oven dried at 40°C. Each recipe was constituted, weighed and prepared according to the ethno medicinal survey information. Recipe 1 contained: *Xylopia aethopica* fruit (5 g), *Nauclea latifolia root* (25 g), *Olax subscorpioidea root* (25 g) and *Mangifera indica* bark (100 g); while recipe 2 contained: *Buchhozia coriaceae* fruit (12.5 g) *Garcinia kola* bark (25 g) *Securidaca longipendunculata* root (25 g) *Nauclea latifolia* leaves (50 g) *Nauclea latifolia* root (50 g) *and Khaya senegalensis* root (100 g). Dried plant parts were grinded into powder using a grinder (Christy) and weighed appropriately. Aqueous extracts of Recipes 1 and 2 were prepared by weighing the plant parts into separate round bottom flasks and covered with distilled water in ratios one of plant materials to fifteen of distilled water (1:15) and boiled for 1 h. Both recipes were thereafter removed from the heat source and allowed to simmer for 3 h according to

Sofowora (1979). The residue was removed from the resulting decoction by filtration. Aliquot 0.1 mL and 0.2 mL of the decoctions were used for the antisickling assay.

For the hydro-ethanolic extracts, Recipes 1 and 2 (155 g and 262.5 g respectively) were soaked separately in 70% ethanol for 72 h. Extracts were concentrated *in vacuo* using the rotary evaporator and freeze dried to complete dryness. Each recipe was thereafter reconstituted in distilled water to obtain 4 mg/mL concentration. Serial dilutions were made to obtain 2 mg/mL, 1 mg/mL, 0.5 mg/mL, and 0.25 mg/mL concentrations used for the antisickling assays.

#### Antisickling Assay Procedures

Blood samples collected from confirmed sickle cell individuals in steady state who attend routine check-ups at the Department of Immunology and Haematology out-patient clinic, Obafemi Awolowo University Teaching Hospital Complex were used (Ethical Clearance number: IRB/IEC/0004553).

For the inhibitory model, 0.2 mL of Hb SS whole blood sample, 0.2 mL of phosphate buffered saline (PBS) solution (pH 7.0) and 0.2 mL test extract were mixed carefully in a test tube and overlaid with 1 mL liquid paraffin to prevent aeration. The mixture was incubated at 37°C for 4 h in a thermostated water bath (Tecan). Freshly prepared 2% w/v sodium metabisulphite solution (0.6 mL) was carefully added under the liquid paraffin after the incubation period and mixed. This was incubated again for 90 min at same temperature. Vanillic acid was employed as positive control for inhibitory. For the reversal model, freshly prepared 2% w/v sodium metabisulphite solution (0.6 mL) was added to 0.2 mL whole blood, 0.2 mL PBS and mixed. The medium was covered with liquid paraffin and incubated for 90 min at 37°C. After the incubation period, 0.2 mL of the test extract was added, mixed carefully and re-incubated for another 4 h. At the end of the experiment, the liquid paraffin layer was carefully removed using a Pasteur pipette and the solution fixed with 3 mL of 5% v/v buffered formalin solution. Both sickled and unsickled red blood cells were counted using the light microscope and photomicrograph of representative slides taken. PHBA was used as positive control for the reversal test while PBS served as the blank in the negative control (Sofowora, 1979).

## **Statistical Analysis**

Each assay was performed in triplicates and the one way ANOVA was used to detect significant differences and standard errors of the mean values. Level of significance was set at p<0.05.

#### Results

#### Ethno medicinal Survey

A total of one hundred and eight (108) respondents including: 49% herb sellers, 30% artisans and traders, 11% civil servants and 10% traditional medical practitioners from different parts of Ife LGA were interviewed. Fifty six percent of respondents were females and 45% between ages 41-50 years (Table 3). Herb sellers in Ile-Ife are mostly females specializing in the treatment of febrile children hence they are called "Elewe-omo" meaning "herb specialists for children". Sizeable number of the respondents (41%) admitted inheriting the knowledge of use of herbs and acquired more knowledge from their family members, while some 36% of respondents were trained through apprenticeship. Some respondents (14%) got the knowledge of the use of particular herbs from the media while 9% claimed they got the knowledge during hospital visits.

Table 1: Demographic features of respondents on the plants used in the management of sickle cell disease in Ile Ife.

| Demographic feature      | Frequency | Percentage % |
|--------------------------|-----------|--------------|
| Gender                   |           |              |
| Male                     | 48        | 44           |
| Female                   | 60        | 56           |
| Total                    | 108       | 100          |
| Age                      |           |              |
| 20-30                    | 7         | 6            |
| 31-40                    | 26        | 25           |
| 41-50                    | 49        | 45           |
| 51-60                    | 21        | 19           |
| 60 and above             | 5         | 5            |
| Occupational level       |           |              |
| Civil servant,           | 12        | 11           |
| Artisans and traders     | 33        | 30           |
| Traditional healer       | 11        | 10           |
| Herb sellers             | 52        | 49           |
| Acquisition of knowledge |           |              |
| Radio                    | 15        | 14           |
| Relative                 | 44        | 41           |
| Hospital                 | 10        | 9            |
| Apprenticeship           | 39        | 36           |

## Medicinal Plants used Ethno-medicinally

The survey revealed 54 recipes consisting 46 plants belonging to 29 plant families (Tables 2 and 3). The most frequently and commonly used plants belong to the Fabaceae family, followed by Cucurbitaceae, Rutaceae and Zingiberaceae. Also plants belonging to families, Rubiaceae, Bignonaniaceae, Annonaceae, Anacardiaceae, Asteraceae, Meliaceae and Poaceae are commonly used (Table 2).

The mostly used plant part for managing sickle cell disease is the leaf (47%) followed by the stem bark (17%) and then the root (14%). Other parts being used include seed (6%) rhizome (2%) and bulb (2%) (Figure 1). Medicinal plant parts are mostly bought from the market (70% sourced from the market) encouraging easy access for users. Other sources include medicinal plant gardens (10%), 7% collect from both the market and gardens, 7% from the market and the wild, while 6% source from the wild only. Most recipes are prepared in form of decoctions and taken orally. Other modes of preparation include: squeezing, fermenting, burning, powdering, and tincture in local gin while powdered herds can be taken orally with pap or mixed with shea-butter and applied topically.

| S/N | Local/<br>common names   | Plant Scientific names                     | Family         | Parts used            | Frequency of occurrence |
|-----|--------------------------|--------------------------------------------|----------------|-----------------------|-------------------------|
| 1   | Egbesi                   | <i>Nauclea latifolia</i> (sm) bruce        | Rubiaceae      | Leaves, Bark,<br>root | 24                      |
| 2   | Pandoro                  | <i>Kigela africana</i> (Lam.) benth.       | Bignonaniaceae | Bark and root         | 15                      |
| 3   | Khaya/Oganwo             | Khaya senegalensis<br>(Desr.) A. Juss      | Meliaceae      | Bark, leaves,<br>Root | 14                      |
| 4   | Eeru Alamo               | <i>Xylopia aethiopica</i> (Dunal). A. Rich | Annonaceae     | Fruit                 | 13                      |
| 5   | Poporo/Sorgum            | <i>Sorghum bicolor</i> L. Moench           | Poaceae        | Leaves and seed       | 11                      |
| 6   | Ibepe/Pawpaw             | Carica papaya L.                           | Caricaceae     | Fruit                 | 9                       |
| 7   | Mangoro/mango            | Mangifera indica L.                        | Anacardiaceae  | Bark and leave        | 9                       |
| 8   | Ipeta                    | Securidaca<br>longipendunculata<br>Fresen. | Polygalaceae   | Root                  | 8                       |
| 9   | Epa ikun                 | Cassia tora (L.) Roxb.                     | Fabaceae       | Seed                  | 8                       |
| 10  | Ewuro/Bitter leaf        | <i>Vernonia amygdalina</i><br>Delile       | Asteraceae     | Leaves                | 8                       |
| 11  | Ifon                     | <i>Olax subscorpiodea</i> Oliv.            | Olacaceae      | Root                  | 6                       |
| 12  | Wonderful cola           | <i>Buchhoizia coriaceae</i><br>Engl.       | Capparaceae    | Seed                  | 6                       |
| 13  | Ewe Emi/ Shea butter     | <i>Vitellaria paradoxa</i> C.F. Gaertn.    | Sapotaceae     | Leaves, fruit         | 6                       |
| 14  | Arunpale                 | Chenopodium<br>ambrosiodes L.              | Chenopodiaceae | Leaves                | 5                       |
| 15  | Osan Lemonu              | Citrus limon L                             | Rutaceae       | Fruit and leaves      | 5                       |
| 16  | Orogbo/Bitter cola       | Garcinia kola Heckel                       | Clusiaceae     | Bark                  | 4                       |
| 17  | Tanson igbo              | <i>Petiveria alliacea</i> L.               | Petiveriaceae  | Leaves and root       | 4                       |
| 18  | Asunwon Oyinbo<br>/Senna | Senna podocarpa Mill.                      | Fabaceae       | Bark                  | 4                       |
| 19  | Koko oba/ lemon<br>grass | <i>Cymbopogon citratus</i> (DC.) Stapf     | Poaceae        | Leaves                | 4                       |
| 20  | Tude                     | <i>Calliandra portoricensis</i> Benth.     | Fabaceae       | Leaves,               | 3                       |
| 21  | Ataare                   | <i>Aframomum melegueta</i><br>K. Schum.    | Zingiberaceae  | Seed                  | 3                       |

Table 2: List of Medicinal Plants used Ethno-medically in Managing Sickle Cell Anaemia and their frequency of occurrence.

| 22 | Yanrin oko            | <i>Lactuca capensis</i> L.                                        | Asteraceae     | Leaves  | 3 |
|----|-----------------------|-------------------------------------------------------------------|----------------|---------|---|
| 23 | Ata ile pupa/Tumeric  | Curcuma longa L.                                                  | Zingiberaceae  | Rhizome | 3 |
| 24 | Afon                  | <i>Treculia africana</i> Decne.                                   | Moraceae       | Bark    | 3 |
| 25 | Egunsi bara           | <i>Citrullus lanatus</i><br>(Thunb.) Matsum. &<br>Nakai           | Cucurbitaceae  | Leaves  | 2 |
| 26 | Ewe otili/ Pigeon pea | <i>Cajanus cajan</i> (L.) millsp.                                 | Fabaceae       | Leaves  | 2 |
| 27 | Okuku                 | Pteleiopsis suberosa<br>Engl. & Diels                             | Combretaceae   | ?       | 2 |
| 28 | Ogbe ori akuko        | Heliotropium indicum L.                                           | Boraginaceae   | Leaves  | 2 |
| 29 | Ugu                   | <i>Telfaira occidentalis</i><br>Hook. f.                          | Cucurbitaceae  | Leaves  | 2 |
| 30 | Jebo                  | <i>Entandrophragma utile</i><br>(Dawe & Sprague)<br>Sprague       | Meliaceae      | Bark    | 2 |
| 31 | Efo Bishop            | <i>Cnidoscolus</i><br><i>aconitifolius</i> (Mill.) I.M.<br>Johns. | Euphobiaceae   | Leaves  | 2 |
| 32 | Ewe Ayo               | Guilandina bonduc L.                                              | Fabaceae       | Leaves  | 2 |
| 33 | Laali                 | Lawsonia inermis L.                                               | Lythraceae     | Leaves  | 1 |
| 34 | Ewe ile/Moringa       | Moringa oleifera Lam.                                             | Moringaceae    | Leaves  | 1 |
| 35 | Ato                   | Chasmanthera<br>dependens Hochst.                                 | Menispermaceae | Leaves  | 1 |
| 36 | Igi ose               | Adansonia digitate L.                                             | Bombacaceae    | Leaves  | 1 |
| 37 | Osun                  | Pterocarpus osun Craib.                                           | Fabaceae       | Leaves  | 1 |
| 38 | Efinrin/Scent leaf    | Ocimum gratissimum L.                                             | Labiateae      | Leaves  | 1 |
| 39 | Orin ata/Fagara       | Zanthoxylum xanthoxyloides Lam.                                   | Rutaceae       | Root    | 1 |
| 40 | Ata ile/ Ginger       | Zingiber officinale<br>Roscoe                                     | Zingiberaceae  | Rhizome | 1 |
| 41 | Aidan                 | <i>Tetraplura tetraptera</i><br>(Schumm. & Thonn.)<br>Taub.       | Fabaceae       | Fruit   | 1 |
| 42 | Ejinrin               | Momordica charantia L.                                            | Cucurbitaceae  | Leaves  | 1 |
| 43 | Alubosa/Onion         | Allium cepa L.                                                    | Amaryllidaceae | Bulb    | 1 |
| 44 | Kasu/Cashew           | Anacardium occidentale<br>L.                                      | Anacardiaceae  | Leaves  | 1 |
| 45 | Masqurade tree        | Polyalthia longifolia<br>Sonn.                                    | Annonaceae     | Fruit   | 1 |
| 46 | Osan wewe/Lime        | Citrus aurantium L.                                               | Rutaceae       | Fruit   | 1 |

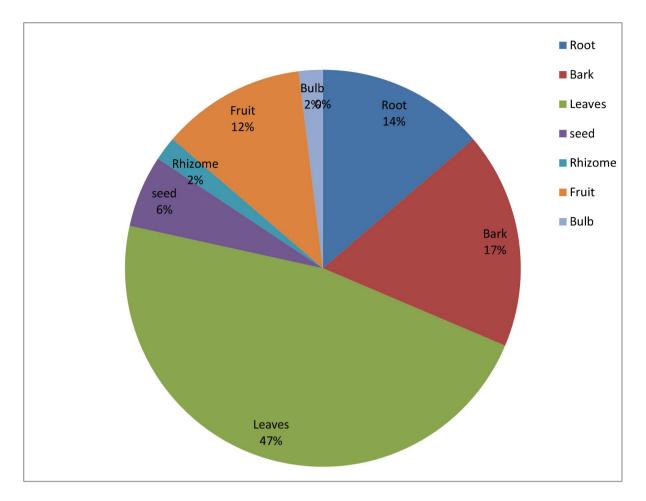



Figure 1: Pie chart showing the percentage use of different plant parts in the treatment of sickle cell disease in Ile-Ife

| Recipe | Local Names                                           | Scientific names                                                                                                 | Parts used                                   | Preparation                 | Mode of administration |
|--------|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-----------------------------|------------------------|
| 1      | Egbesi<br>Ipeta<br>Wonderful Cola<br>Orogbo<br>Oganwo | Nauclea latifolia<br>Securidaca longipendunculata<br>Buchhoizia coriaceae<br>Garcinia kola<br>Khaya senegalensis | Root, Leaf<br>Root<br>Fruit<br>Fruit<br>Bark | Decoction                   | Oral                   |
| 2      | Eeru alamo<br>Mangoro<br>Egbesi<br>Ifon               | Xylopia ethiopica<br>Mangifera indica Nauclea<br>latifolia<br>Olax subscorpiodea                                 | Fruit<br>Bark<br>Root<br>Root                | Decoction                   | Oral                   |
| 3      | Ibepe<br>Poroporo                                     | C <u>arica papaya</u><br>Sorghum bicolor                                                                         | Fruit<br>Leaf                                | Ferment for 5 days and boil | Oral                   |
| 4      | Egbesi<br>Ewe Otili<br>Oganwo                         | Nauclea latifolia<br>Cajanus cajan<br>Khaya senegalensis                                                         | Bark<br>Leaf<br>Bark                         | Decoction                   | Oral                   |
| 5      | Ewe Ayo<br>Ewe Otili<br>Ewe Poroporo<br>Ewe Koko Oba  | Guilandina bonduc<br>Cajanus cajan<br>Sorghum bicolor<br>Cymbopogon citratus                                     | Leaf<br>Leaf<br>Leaf<br>Leaf<br>Leaf         | Decoction                   | O<br>r<br>a<br>l       |
| 6      | Ewe Emi<br>Ata Ile Pupa<br>Eso Ibepe                  | Vitellaria paradoxa<br>Curcuma longa<br>Carica papaya                                                            | Leaf<br>Rhizome<br>Fruit                     | Decoction                   | Oral                   |
| 7      | Oganwo<br>Poroporo<br>Ewe Emi                         | Khaya senegalensis<br>Sorghum bicolor<br>Vitellaria paradoxa                                                     | Bark<br>Leaf<br>Leaf                         | Decoction                   | Oral                   |
| 8      | Egbesi<br>Ipeta                                       | Nauclea latifolia<br>Securidaca longipendunculata                                                                | Root<br>Root                                 | Decoction                   | Oral                   |

Table 3: List of recipes used in managing sickle cell anaemia including plant parts used, mode of preparation and mode of administration

|    | Pandoro                                               | Kigelia africana                                                                | Bark                                |                                                                     |                |
|----|-------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------|---------------------------------------------------------------------|----------------|
|    | Mangoro                                               | Mangifera indica                                                                | Bark                                |                                                                     |                |
| 9  | Ata Ile Pupa                                          | Curcuma longa                                                                   | Rhizome                             | Decoction                                                           | Oral           |
|    | Ewe Emi                                               | Vitellaria paradoxa                                                             | Leaf                                |                                                                     |                |
|    | Ewe Ayo                                               | Guilandina bonduc                                                               | Leaf                                |                                                                     |                |
|    | Ewe Poroporo                                          | Sorghum bicolor                                                                 | Leaf                                |                                                                     |                |
| 10 | Egbesi                                                | Nauclea latifolia                                                               | Bark, Root                          | Decoction                                                           | Oral           |
|    | Pandoro                                               | Kigelia africana                                                                | Bark<br>Bark                        |                                                                     |                |
|    | Oganwo                                                | Khaya senegalensis                                                              | Duik                                |                                                                     |                |
| 11 | Eeru Alamo                                            | <i>Xylopia ethiopica</i>                                                        | Fruit                               | Decoction                                                           | Oral           |
|    | Wonderful ColaBuchhoizia coriaceaeFruit<br>Root       |                                                                                 |                                     |                                                                     |                |
|    | Pandoro                                               | Kigelia africana                                                                | 1000                                |                                                                     |                |
| 12 | Eso Ibepe<br>Wonderful Cola<br>Poroporo               | Carica papaya<br>Buchhoizia coriaceae<br>Sorghum bicolor                        | Fruit<br>Seed<br>Leaf               | Ferment and boil with<br>wonderful Cola                             | Oral           |
| 13 | Egbesi<br>Yanrin                                      | Nauclea latifolia<br>Launaea taraxacifolia                                      | Leaf<br>Leaf                        | Decoction                                                           | Oral           |
|    | Ewuro                                                 | Vernonia amygdalina                                                             | Leaf                                |                                                                     |                |
| 14 | Wonderful Cola<br>Egbesi<br>Eeru Alamo<br>Orogbo Bark | Buchhoizia coriaceae<br>Nauclea latifolia<br>Xylopia ethiopica<br>Garcinia kola | Seed<br>Leaf, Bark<br>Fruit<br>Bark | Decoction                                                           | Oral with milk |
| 15 | Ugu<br>Poroporo                                       | Telfairia occidentalis<br>Sorghum bicolor                                       | Leaf<br>Leaf                        | Soak Sorghum leaf in hot<br>water overnight and<br>squeeze with Ugu | Oral           |
| 16 | Mangoro<br>Ipeta<br>Oganwo                            | Mangifera indica<br>Securidaca longipendunculata<br>Khaya senegalensis          | Leaf<br>Bark<br>Bark<br>Leaf        | Decoction                                                           | Oral           |

|    | Epa Ikun       | Cassia tora                          |                        |                           |      |
|----|----------------|--------------------------------------|------------------------|---------------------------|------|
| 17 | Egbesi         | Nauclea latifolia                    | Leaf, Root             | Decoction                 | Oral |
|    | Ipeta          | Securidaca longipendunculata         | Roots<br>Fruits        |                           |      |
|    | Eeru Alamo     | Xylopiaa ethiopica                   | Bark                   |                           |      |
|    | Mangoro        | goro Mangifera indica                |                        |                           |      |
| 18 | Pandoro        | Kigela africana                      | Bark, Root             | Decoction                 | Oral |
|    | Epa Ikun       | Cassia tora                          | Leaf<br>Fruit          |                           |      |
|    | Wonderful Cola | Buchhoizia coriaceae                 | Trutt                  |                           |      |
| 19 | Epa Ikun       | Cassia tora                          | Leaf                   | Decoction                 | Oral |
|    | Eeru Alamo     | Xylopiaa ethiopica                   | Fruit<br>Root<br>Roots |                           |      |
|    | Ifon           | Olax subscorpiodea                   |                        |                           |      |
|    | Ipeta          | Securidaca longipendunculata         |                        |                           |      |
| 20 | Ugu            | Usu Telfairia occidentalis Leaf Deco | Decoction              | Oral                      |      |
|    | Ibepe          | Carica papaya                        | Fruit<br>Leaf          |                           |      |
|    | Poroporo       | Sorghum bicolor                      | Lear                   |                           |      |
| 21 | Pandoro        | Kigelia africana                     | Bark                   | Decoction                 | Oral |
|    | Eeru Alamo     | Xylopiaa ethiopica                   | Fruit<br>Leaf, Bark    |                           |      |
|    | Egbesi         | Nauclea latifolia                    |                        |                           |      |
| 22 | Egbesi         | Nauclea latifolia                    | Leaf, Root             | Decoction                 | Oral |
|    | Ipeta          | Securidaca longipendunculata         | Root<br>Root           |                           |      |
|    | Pandoro        | Kigelia africana                     | Bark                   |                           |      |
|    | Oganwo         | Khaya senegalensis                   |                        |                           |      |
|    |                |                                      |                        |                           |      |
| 23 | Ibepe          | Carica papaya                        | Fruit<br>Leaf, Root    | Dry and grind into powder | Oral |
|    | Tude           | Calliiandia portoricensis            |                        | •                         |      |
| 24 | Arunpale       | Chenopodium ambrosiodes              | Leaf<br>Leaf           | Decoction                 | Oral |

|     | Ewe Emi           | Vitellaria paradoxa          | Leaf, Bark          |                          |                            |
|-----|-------------------|------------------------------|---------------------|--------------------------|----------------------------|
|     | Egesi             | Nauclea latifolia            |                     |                          |                            |
| 25  | Orin Ata (Fagara) | Zanthoxylum xanthoxyloides   | Root                | Powder                   | Oral                       |
| 26  | Egbesi            | Nauclea latifolia            | Leaf, Bark<br>Fruit | Decoction                | Oral                       |
|     | Eeru Alamo        | Xylopiaa ethiopica           |                     |                          |                            |
|     | Ataare            | Aframomum maleguata          | Seed                | Burning dried leaves and | Oral (Mix powder with pap) |
| 27  | Tansan Igbo       | Petiveria alliaceae          | Leaf                | seed together            |                            |
| 28  | Ifon              | Olax subscorpiodea           | Root                | Decoction                | Oral                       |
|     |                   | Securidaca longipendunculata | Root                |                          |                            |
|     | Ipeta             | Mangifera indica             | Bark                |                          |                            |
|     | Mangoro           | Cassia tora                  | Bark                |                          |                            |
|     | Epa Ikun          |                              |                     |                          |                            |
| 29  | Egbe ori akuko    | Heliotropium indicum         | Leaf                | Tincture in local gin    | Oral                       |
|     | Yanrin            | Lactuca capensis             | Leaf                |                          |                            |
|     |                   | Vernonia amygdalina          | Leaf                |                          |                            |
| 2.0 | Ewuro             |                              |                     |                          |                            |
| 30  | Wonderful cola    | Buchhoizia coriaceae         | Seed<br>Leaf        | Decoction                | Oral                       |
|     | Epa ikun          | Cassia tora                  | Root                |                          |                            |
|     | Pandoro           | Kigelia africana             | Seed                |                          |                            |
|     |                   | Xylopiaa ethiopica           | Root                |                          |                            |
|     | Eeru alamo        | Garcinia kola                | Bark                |                          |                            |
|     | Orogbo            | Mangifera indica             |                     |                          |                            |
|     | Mangoro           |                              |                     |                          |                            |
| 31  | Tanso             | Petiveria alliaceae          | Leaf, Root          | Tincture in local gin    | Oral                       |
|     | Arunpale          | Chenopodium ambrosiodes      | Leaf                |                          |                            |
| 32  | Eru Alamo         | Xylopia ethiopica            | Fruit               | Decoction                | Oral                       |
|     |                   | Nauclea latifolia            | Root                |                          |                            |
|     | Egbesi            | Vernonia amygdalina          | Leaf                |                          |                            |
|     | Ewuro             |                              |                     |                          |                            |
| 33  | Oganwo            | Khaya senegalensis           | Bark                | Decoction                | Oral                       |
|     | Eru alamo         | Xylopia ethiopica            | Fruit<br>Bark       |                          |                            |
|     | Igi iba           |                              | Leaf                |                          |                            |
|     | <u> </u>          | Cymbopogon citratus          |                     |                          |                            |
|     | Koko oba          |                              |                     |                          |                            |

| 34 | Egbesi<br>Ipeta<br>Oganwo                 | Nauclea latifolia<br>Securidaca longipendunculata<br>Khaya senegalensis                    | Leaf, Root<br>Root<br>Leaf, Bark   | Decoction                | Oral             |
|----|-------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------|--------------------------|------------------|
| 35 | Jebo<br>Tude<br>Asunwo<br>Afon            | Entandrophragma utile<br>Calliiandia portoricensis<br>Senna podocarpa<br>Treculia africana | Bark<br>Leaf, Bark<br>Bark<br>Bark | Decoction                | Oral             |
| 36 | Oganwo<br>Egbesi<br>Koko oba<br>Eru Alamo | Khaya senegalensis<br>Nauclea latifolia<br>Cymbopogon citratus<br>Xylopia ethiopica        | Bark<br>Bark<br>Leaf<br>Fruit      | Decoction                | Oral             |
| 37 | Ifon<br>Oganwo<br>Egbesi                  | Olax subscorpiodea<br>Khaya senegalensis<br>Nauclea latifolia                              | Root<br>Root<br>Leaf, Root         | Decoction                | Oral and bathing |
| 38 | Arunpale<br>Egbesi<br>Pandoro<br>Oganwo   | Chenopodium ambrosiodes<br>Nauclea latifolia<br>Kigelia africana<br>Khaya senegalensis     | Leaf<br>Leaf, Root<br>Leaf<br>Bark | Decoction                | Oral             |
| 39 | Egbe ori akuko<br>Ejinrin<br>Yanrin       | Heliotropium indicum<br>Momodica charantia<br>Lactuca capensis                             | Leaf<br>Leaf<br>Leaf               | Squeeze leaves with salt | Oral             |
| 40 | Egbesi<br>Pandoro<br>Poroporo             | Nauclea latifolia<br>Kigelia africana<br>Sorghum bicolor                                   | Leaf, Bark<br>Bark<br>Leaf         | Decoction                | Oral             |
| 41 | Egbesi<br>Pandoro                         | Nauclea latifolia<br>Kigelia africana                                                      | Bark, Root<br>Bark<br>Bark         | Decoction                | Oral             |

|    | Mangoro<br>Poroporo                        | Mangifera indica<br>Sorghum bicolor                                             | Leaf                                   |                                         |                     |
|----|--------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------|-----------------------------------------|---------------------|
| 42 | Ewe Emi<br>Oganwo<br>Ibepe<br>Ata ile pupa | Vitellaria paradoxa<br>Khaya senegalensis<br>Carica papaya<br>Curcuma longi     | Leaf, bark<br>Bark<br>Fruit<br>Rhizome | Decoction                               | Oral                |
| 43 | Pandoro<br>Oganwo<br>Ewe Emi               | Kigelia africana<br>Khaya senegalensis<br>Vitellaria paradoxa                   | Bark<br>Bark<br>Leaf                   | Decoction                               | Oral                |
| 44 | Ibepe<br>Mangoro                           | Carica papaya<br>Mangifera indica                                               | Leaf, Fruit<br>Leaf, Root              | Decoction                               | Oral                |
| 45 | Tanso<br>Masquerade                        | Petiveria alliaceae<br>Polyalthia longifolia                                    | Root<br>Fruit                          | Tincture in local gin                   | Oral                |
| 46 | Tanson<br>Arunpale<br>Ori                  | Petiveria alliaceae<br>Chenopodium ambrosiodes<br>Vitellaria paradoxa           | Leaf<br>Leaf<br>Butter                 | Dry, Powder and mix<br>with shea butter | Topical application |
| 47 | Epa ikun<br>Egbesi<br>Pandoro<br>Oganwo    | Cassia tora<br>Nauclea latifolia<br>Kigelia africana<br>Khaya senegalensis      | Leaf<br>Root<br>Bark<br>Leaf           | Decoction                               | Oral                |
| 48 | Mangoro<br>Poroporo                        | Mangifera indica<br>Sorghum bicolor                                             | Leaf, bark<br>Leaf                     | Decoction                               | Oral                |
| 49 | Arunpale<br>Epa ikun<br>Egbesi<br>Pandoro  | Chenopodium ambrosiodes<br>Cassia tora<br>Nauclea latifolia<br>Kigelia africana | Leaf<br>Leaf<br>Leaf<br>Bark           | Decoction                               | Oral                |
| 50 | Okuku<br>Asunwon<br>Egbesi                 | Pteleiopsis suberosa<br>Senna podocarpa<br>Nauclea latifolia                    | Bark<br>Bark<br>Leaf, Root             | Decoction                               | Oral                |

| 51 | Epa ikun<br>Pandoro<br>Egbesi | Cassia tora<br>Kigelia africana<br>Nauclea latifolia                    | Leaf<br>Fruit<br>Leaf, bark | Decoction | Oral |  |
|----|-------------------------------|-------------------------------------------------------------------------|-----------------------------|-----------|------|--|
| 52 | Ewuro<br>Ejinrin              | Vernonia amygdalina<br>Momodica charantia                               | Leaf<br>Leaf                | Decoction | Oral |  |
| 53 | Ewe laali<br>Ewuro<br>Kasu    | Lawsonia inermis<br>Vernonia amygdalina<br>Anacardium occidentale       | Leaf<br>Leaf<br>Leaf        | Decoction | Oral |  |
| 54 | Ewe Ile<br>Efo Bishop<br>Ugu  | Moringa oleifera<br>Cnidoscolus aconitifolius<br>Telfairia occidentalis | Leaf<br>Leaf<br>Leaf        | Decoction | Oral |  |

# **Antisickling Results**

The aqueous extract of the two recipes tested showed high inhibitory and reversal properties. Recipe 1 showed higher antisickling properties than recipe 2 (table 4) while the hydro-ethanolic extract of both recipes exhibited high reversal properties at low concentrations (table 5).

| Volume of<br>decoction (mL)            | % Inhibition<br>Recipe 1 | % Reversal<br>Recipe 1 | % Inhibition<br>Recipe 2 | % Reversal<br>Recipe 2 |
|----------------------------------------|--------------------------|------------------------|--------------------------|------------------------|
| 0.1                                    | 81.37±1.09               | 88.56±1.38*            | 78.51±0.78               | 79.8±7.16*             |
| 0.2                                    | 66.31±2.07               | 67.8±1.58              | 76.14±2.01               | 74.03±3.31             |
| Vanillic acid<br>(4 mg/mL)             | 96.71± 0.91              | -                      | 96.71± 0.91              | -                      |
| p-hydroxylbenzoic<br>acid<br>(4 mg/mL) | -                        | 78.97± 1.89            | -                        | 78.97 ± 1.89           |

*Values are presented as*  $\pm$  *SEM (standard error of mean).* p < 0.05; \*-*significantly higher than the positive control.* 

| Concentration                      | % Inhibition | % Reversal  | % Inhibition | % Reversal   |
|------------------------------------|--------------|-------------|--------------|--------------|
| (mg/mL)                            | Recipe 1     | Recipe 1    | Recipe 2     | Recipe 2     |
| 4.0                                | 33.41±1.76   | 67.62±1.80  | 55.25±1.32   | 53.58±2.15   |
| 2.0                                | 45.71±1.12   | 28.04±4.13  | 41.01±1.50   | 59.34±1.91   |
| 1.0                                | 53.95±2.17   | 20.58±4.21  | 49.43±1.01   | 63.48±1.18   |
| 0.5                                | 69.25±1.30   | 19.4±3.59   | 68.28±2.78   | 57.39±1.76   |
| 0.25                               | 60.32±1.12   | 19.71±2.49  | 59.32±2.34   | 49.15±3.78   |
| Vanillic acid<br>4mg/mL            | 96.71± 0.91  | -           | 96.71± 0.91  | -            |
| p-hydroxybenzoic<br>acid (4 mg/mL) | -            | 78.97± 1.89 | -            | 78.97 ± 1.89 |

Table 5: Anti-sickling activities of the hydro-ethanolic extracts of Recipes1 and 2.

n=3; values are presented as  $\pm$  SEM (standard error of mean). p<0.05

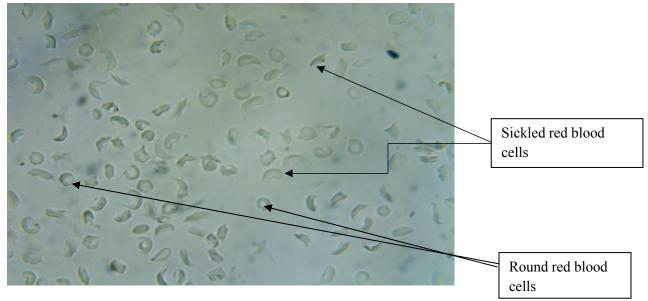



Figure 2: Representative Photomicrograph of untreated deoxygenated Hb SS red blood cells (negative control)

A B

**Figure 3:** Representative Photomicrograph of typical A) Inhibition and B) reversal of Hb SS red blood cells. *Arrows show normal round cells after treatment with recipe 1.* 

## Discussion

Medicinal plants have been greatly employed in the treatment of many health conditions, especially in the Africa continent. In Ile-Ife community, sickle cell anaemia is amongst the diseases being managed palliatively with herbs and it is believed that sickling process can be hindered traditionally. The traditional healers without any scientific background have made use of abundant resources from nature to manage SCD with a promising degree of success over time. There are many plants already in use as sources of treatment for SCD in various parts of the world.

The ethno medicinal survey carried out in this study, amongst the people of Ile-Ife, revealed that the knowledge of the use of herbs reside more with herb sellers, market men and women, and traditional medical practitioners. Although the knowledge of the use of herbs is usually passed from generations and kept within the

family, interested members of the community are still being trained as herbalists (apprenticeship). Most of the respondents were adults, 45% aged between 41-50 years, 25% between 31-40 years, 19% between 51-60 years while only 6% and 5% were aged above 60 years and below 30 years respectively (Table 1). The knowledge of the use of herbs especially for the management of sickle cell anaemia in Ile-Ife resides with women more than men. Seventy percent of the plants used by the Ile-Ife people are obtained from the community market (Figure 1) indicating that most of the plants are readily accessible, acceptable by the people and affordable. These are major advantages of herbal medicine over orthodox medicine. The leaves are the most frequently used plant part (47%), in the management of sickle cell disorder while root and bark accounted for 17%, and 14% usage respectively (Figure 2).

The survey revealed 54 recipes consisting 46 plants belonging to 29 plant families (Tables 2 and 3). The medicinal plant with the highest frequency of occurrence is *Nauclea latifolia*, followed by *Kigela africana, Khaya senegalensis, Xylopia aethiopica, Sorghum bicolor, Carica papaya, and Mangifera indica.* (Table 2). These plants are mostly used in combination with other plant materials to make decoctions, tinctures or powdered drugs which are taken orally or topically (Table 3). The mode of preparation is majorly by boiling the plant parts in water to make decoctions. Some are prepared by soaking in local gin to make tincture, squeezed to extract the juice, fermented and boiled, while others are dried, powdered and taken orally with pap (Table 3). The symptoms of sickle cell crisis is often associated with malaria hence several plants used in the treatment of malaria are also being employed in managing the disease. Some plants reported by Odugbemi *et al*, 2007; and Adebayo and Kretti, 2011, such as *Nauclea latifolia, Khaya senegalensis, Cajanus cajan, Xylopia aethiopica, Carica papaya, Zingiber officinale, Vernonia amygdalina, Mangifera indica, Cymbopogon citratus as antimalarial plants were also found in this study to be very important in managing sickle cell disease (Table 3). The dependence of the people on medicinal plants and their role in health care system will increase as they are culturally viable and expected to remain affordable. This is because the existing modern health care services is limited and expensive compared with traditional medicine.* 

Out of the fifty-four recipes used by the Ile-Ife people of Osun state to manage sickle cell disease, two commonest recipes (Tables 3) were selected for antisickling studies. The aqueous extracts of the two recipes were prepared as they were being prepared locally i.e. by decoction. Aliquot 0.2 mL of the decoction was used directly for the antisickling assay. Another 0.2 mL of the decoction was taken and diluted with equal volume of distilled water to reduce the concentration. The decoctions gave very high inhibitory and reversal activities on Hb SS red blood cells (Table 4, Figures 2-3), although the inhibitory activity of the positive control, Vanillic acid at 4 mg/mL was significantly (p<0.05) higher than that of the recipes. Recipe 1 had a better reversal activity than recipe 2 and significantly (p<0.05) more active than PHBA, positive control (Table 4).

For the hydro-alcoholic extracts, the highest inhibitory antisickling of recipe 1 and 2 were recorded at 0.5 mg/mL concentration ( $69.25\pm 0.30\%$  and  $68.28\pm2.78\%$  respectively) (Table 5), inferring that the extracts were more active at lower concentrations. The EC<sub>50</sub> for the inhibitory activities of recipe 1 was  $1.70\pm0.30$  mg/mL while that of recipe 2 was  $1.29\pm0.39$  mg/mL. The reversal properties of the hydro-ethanolic extracts of recipe 1 gave the highest activity of  $67.62\pm1.80\%$  at 4 mg/mL while  $63.48\pm1.185\%$  reversal was recorded for recipe 2 at 1.0 mg/mL. The reversal activity of PHBA positive control,  $78.97\pm1.89\%$ , was significantly higher at 4 mg/mL (Table 5). The EC<sub>50</sub> value for the reversal activity of recipe 1 was  $2.56\pm0.10$  mg/mL while that of recipe 2 was  $0.61\pm2.20$  mg/mL. From this EC<sub>50</sub> values, it can be inferred that the hydro-ethanolic extract of recipe 2 is more active than that of recipe 1. There has been advocacy for low therapeutic dose for the treatment of SCD due to its chronic nature as well as the large amount of Hb in the body which requires large and frequent doses of drugs to effectively treat the disease (Nnamani *et al.*, 2008).

The ethno-medicinal claim of the use of the decoction of recipes 1 and 2 has been validated in this study. The highest inhibitory and reversal activities were recorded with the aqueous extracts and this showed that the water soluble components of the plants are responsible for the antisickling activities. This finding is in line with literature as amino acids and other hydrophilic compounds have been implicated in antisickling activities exhibited by medicinal plants (Cyril-Olutayo *et al*, 2009; Osuagwu, 2010; Adebayo and Krettli, 2011).

The constituents of recipe 1 viz, *Xylopia aethiopica, Mangifera indica, Olax subscorpiodea* and *Nauclea latifolia* had been reported for their antisickling properties and also implicated in the treatment of Malaria (Benoit-Vical*et al.*, 1998, Afsana *et al.*, 2003, Uwakwe and Nwaoguikpe 2008; Abba *et al.*, 2010, Ibukunoluwa *et al.*, 2015, Azubuike *et al.*, 2016). Of the six plant materials that make up recipe 2, *Nauclea latifolia* roots and leaves, *Garcinia cola* and *Khaya senegalensis* had been reported to have antisickling properties (Adejumo *et al.*, 2011; Oyedapo *et al.*, 2016). The antisickling properties of some of the plants reported in literature were higher than the combinations in this study, however, it is important to note that medicinal plants are used not only for the treatment of diseases but also as potential material for maintaining good health and conditions. These medicinal plants contain phytochemicals such as tannins, saponins, and flavonoids that confer other properties. Tannins have astringent

properties which hasten the healing of wounds and inflamed mucous membrane due to their physiological activities such as anti-oxidant, antimicrobial and anti-inflammatory properties. The traditionally-held belief of the use of combination of herds is that the synergistic combination of several active principles in some herbal preparations is responsible for their beneficial effects (Taiz and Zeiger. 1991). *Buchholzia coriacea* (Wonderful cola) has antioxidant, anti-inflammatory and analgesic properties while *Securidaca longipendiculata* has membrane stability properties and has been used in various antisickling herbal recipes (Egunyomii *et al.*, 2009, Adisa *et al.*, 2011, Olaleye *et al.*, 2012). These plants have been reported to contain amino acids, flavonoids which have been implicated in antisickling and antioxidant properties (Bagchi *et al.*, 1999, Nwakwe and Nwaoguikpe, 2008), and work in synergy to effect the high inhibitory and reversal activities.

## Conclusion

Many plant species are employed singly and in combination to combat symptoms of sickle cell anaemia locally in Ile-Ife. The two recipes tested possessed antisickling properties though the aqueous extracts gave a better antisickling activities than the hydro ethanolic extracts. The use of these recipes for managing sickle cell disorder has been authenticated in this study. *In vivo* experiments and toxicology studies would still need to be carried out to ensure the efficacy and the safety of any drug formulation from the crude plant extracts.

## **Conflict of Interest**

The Authors declare no conflict of interest.

## References

- 1. Abbah J, Amos S, Chindo B, Ngazal I, Vongtau, H.O, Farida T, Odutola, A.A, and Wambebe C. (2010). Pharmacological evidence favouring the use of *Nauclea latifolia* in malaria ethnopharmacy: Effects against nociception, inflammation, and pyrexia in rats and mice. *Journal of Ethnopharmacology*, 127: 85-90.
- 2. Adebayo I.O. and Krettli A.U. (2011). Potential antimalarials from Nigerian plants: A review. *Journal of Ethnopharmacology* 133 (2): 289-302
- 3. Adejumo, O.E., Ayoola, M.D., Kolapo, A.L., Orimoyegun, V.O. and Olatunji, P.O. (2011). Anti-sickling activities of extracts of leaf, seed and seed pod of *Garcinia kola* Heckel. *African Journal of Pharmacy and Pharmacology*, 5: 48–52.
- 4. Adesanya, S. A, Idowu, T. B. and Elujoba, A. A. (1988). Antisickling activity of *Adansonia digitata*. *Planta medica*, 54(4): 374.
- Adisa R.A., Choudhary M.I., and Olorunsogo O.O., 2011, Hypoglycemic activity of Buccholzia coriacea (Capparaceae) seeds in streptozotocin-induced diabetic rats and mice, *Experimental and Toxicologic Pathology*, 63:619-25
- 6. Afsana, K. Shiga K., Ishizuka S. and Hara, H. (2003). Ingestion of an indigestible saccharide, diffuctose anhydride III, partially prevents the tannic acid-induced suppression of iron absorption in rats. *Journal Nutrition*, 2003, 135(11):3553-60
- 7. Ajala, O. and Olayiwola W. (2013). An Assessment of the growth of Ile Ife, Osun state Nigeria, using Multi-Temporal Imageries. *Journal of Geography and Geology*, 5:10.5539
- 8. Azubuike, C.P., Uzoeto1, C.A., Igbokwe, N.H., Igwilo C.I. (2016). In vitro antisickling, antimicrobial and antioxidant potentials of extracts of *Sorghum bicolor* (L) Moench seeds and *Mangifera indica* (L) Anacardiaceae leaves and their formulations. *Journal of Science and Practice of Pharmacy*, 3 (1): 135-144
- 9. Bagchi, M., Milnes, M., Williams, C., Balmoori, J., Ye, X., Stohs, S.J., Bagchi, D. (1999). Acute and chronic stress-induced gastrointestinal injury in rats, and protection by a novel IH636 grape seed proanthocyanidin extract. *Nutritional Resource*, 1999, 19, 1189–1199.
- Ballas SK, Kessen MR, Goldberg MF, Lutty GA, Dampier C, Osunkwo I, Wang WC, Hoppe C, Haggar W, Dabari DS, Malik P. (2012). "Beyond the definition of the phenotypic complications of sickle cell disease: an update on management," *Scientific World Journal*, 949535 <u>https://doi.org/10.1100/2012/949535</u>.
- 11. Benoit-Vical, F., Valentin, A., Cournac, V., Pelissier, Y., Mallie, M. and Bastide, J.M. (1998). In vitro antiplasmodial activity of stem and root extracts of *Nauclea latifolia* S.M. (Rubiaceae). *Journal of Ethnopharmacology* 61:173–178.
- 12. Bhatia M, and Sheth S. (2015). Hematopoietic stem cell transplantation in sickle cell disease: patient selection and special considerations. *Journal of Blood Medicine* 6:229–238.

- 13. Broadus H. Docent (2018). National Museum of African Art (NMAfA), Washington, DC.
- 14. Cyril-Olutayo M.C., Elujoba A.A. and Durosimi M.A. (2009). Anti-sickling properties of the fermented mixture of Carica papaya Linn and Sorghum bicolor (L.) Moench. African Journal of Pharmacy and Pharmacology (3):140–3.
- 15. Cyril-olutayo M.C., Agbedahunsi J.M, Akinola N.O. (2018). In vitro Evaluation of *Moringa oleifera* Leaf Extracts Used in Managing Sickle Cell Patients in South West Nigeria. *Nigerian. Journal of Pharmaceutical Research* 2018, 14 (1) 69-79
- 16. Egunyomi, A., Moody, J. O. and Eletu, O. M. (2009). Antisickling activities of two ethnomedicinal plant recipes used for the management of sickle cell anaemia in Ibadan, Nigeria. *African Journal of Biotechnology* 8 (1): 020-025.
- 17. Flemming A.P. (1989). The presentation, management and prevention of crises in sickle cell disease in Africa. *Blood Reviews* 3:19-28.
- 18. Galanello, R. and Origa R. (2010) Beta-thalassemia Orphanet J Rare Dis. 5: 11.
- 19. Herrick, J.B. (2001). Peculiar elongated and sickle-shaped red blood corpuscles in a case of severe anemia. *Yale Journal of Biology and Medicine*, 74:179–84.
- Ibukunoluwa M.R., Olusi T.A., Dada E.O. (2015). Assessment of chemical compositions of three antimalarial plants from Akure, Southwestern Nigeria: A preliminary study. *African Journal of Plant Science*, 9(8), 313-319.
- 21. Imaga, N. O., Gbenle, G. O., Okochi, V. I. (2009). "Antisickling property of *Carica papaya* leaf extract," *African Journal of Biochemistry Research*, 3(4): 102–106.
- 22. Isaac -Sodeye, W. A. (1975). Sickle cell disease lionel, E.H., whit by, Britain, C.J.C (1969). Disorders of the blood 10th Edition, pp 357-362.
- 23. Lowe, J.S. and Anderson P.G. (2015). Blood Cells: in Stevens & Lowe's Human Histology (Fourth Edition) pg 105-122.
- 24. Murayama M. (1966). Year Molecular mechanism of red cell "sickling". Science, 153(3732):145-149.
- 25. Njikam P.K., Panjo M.Y., Ngonseu, E. and Mama N. (1986). Acton des deux plantes medicinales Camerounaises sur les drepanocyoses in vitro. *Annals Univeritaires. Sciences et Sante* 3, 40-46.
- 26. Nnamani, N., Joshi, G.S., and Danso-Danquah, R. (2008) "Pyridyl derivatives of benzaldehyde as potential antisickling agents," *Chemistry and Biodiversity*, 5(9): 1762–1769.
- 27. Odugbemi, T.O., Akinsulire, O.R., Aibinu, I.E. and. Fabeku P.O. (2007). Medicinal plants useful for malaria therapy in Okeigbo, Ondo State, Southwest Nigeria *African Journal of Traditional Complementary and Alternative Medicine*, 4: 191-198.
- 28. Ogunyemi, C. M., Elujoba, A. A., and Durosimi, M. A. (2008). "Antisickling properties of *Carica papaya* Linn," *Journal of Natural Products* 1: 56–66.
- 29. Olaleye S.B., Ige A.O., Michael O.S., and Owoyele B.V. (2012). Analgesic and Anti-Inflammatory effects of Ethanol Extracts of *Buchholzia coriacea* Seeds in Male Rats, *African Journal of Biomedical Research*, 15: 171-176.
- 30. Olupona, J. K.: City of 201 Gods: Ile-Ife in Time, Space and Imagination, Berkeley 2011.
- 31. Osuagwu CG. (2010). Mechanism of the anti-sickling effects of *Cajanus cajan* and Phenylalanine. *Nigerian Journal of Biochemistry and Molecular Biology*, 25:68–71
- 32. Oyedapo, O.A., Agbedahunsi, J.M., Cyril-Olutayo, C.M. (2016). Anti-sickling activities of the stem bark of three Khaya species found in Nigeria: *K. senegalensis A. Juss., K. grandifoliola, (Welw) CDC.* and *K. ivorensis A.* Chev. Nigerian Journal of Natural Products and Medicine, 20:161-166
- Piel, F.B., Patil, A.P., Howes R.E., Nyangiri, A., Gething, P.W., Williams, T.N., Weatherall, D.J. and Simon I. (2010). Hay Global distribution of the sickle cell gene and geographical confirmation of the malaria hypothesis. *Nature Communications*. (1): 104.
- 34. Shah KA, Patel MB, Patel RJ, Parmar PK. 2010 Mangifera indica (mango) Pharmacognosy Review, 2010;4:42.
- 35. Sofowora, E. A. (1979), "Isolation and characterization of an antisickling agent from the root of *Fagara zanthoxyloides*," in Proceedings of a Symposium Fagara and the Red Blood Cell, A. Sofowora and A. I. Sodeye (1975) Eds., pp. 79–87, University of Ife Press, Ile-Ife, Nigeria.
- 36. Taiz L, and Zeiger E. (1991) Plant Physiology. 3rd ed. California: The Benjamin Publishing Company.
- 37. Uwakwe, A. A. and Nwaoguikpe, R. N. (2008). *In vitro* anti-sickling effects of *Xylopia aethiopia* and *Monodora myristica. Journal of Medicinal Plant Research*, 2: 119–24.
- 38. WHO Regional office for Africa, Sickle cell disease prevention and control, 2013, http://www.afro.who.int/en/nigeria/nigeria-publications/1775-sickle cell disease.html.