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Abstract 

Background: Chemotherapeutic treatment of premenopausal women has been linked to premature ovarian failure 

(POF). Cistanches Herba (CH) is a commonly used male impotence and female infertility treatment in China; however, 

whether CH protects ovaries from chemotherapeutic drug-induced POF remains unclear. In this study, we investigated 

the protective effects of CH in a mouse model of chemotherapeutic drug-induced POF.  

Materials and Methods: We administered low- and high-concentration CH to cisplatin-induced POF mice for 2 weeks 

and determined body and ovarian weights, as well as serum follicle-stimulating hormone (FSH) and estradiol 

concentrations, to evaluate ovarian function. In addition, we evaluated the protective mechanisms of CH by detecting 

the levels of apoptosis-related proteins and evaluating markers of mitochondrial function.  

Results: In POF mice, we observed reduced body and ovarian weights; elevated serum FSH and attenuated estradiol 

concentrations; apoptosis of ovarian granulosa with concomitant changes in apoptosis-related proteins (including 

caspase-3, poly adenosine diphosphate-ribose polymerase, Bcl-2, and Bax); and mitochondrial dysfunction, such as a 

reduction in mitochondrial numbers, destruction of ultrastructural morphology, decrease in ATPase activity, and 

decreases in mitochondrial membrane potential and mitofusin-2 (a mitochondria dynamin-like GTPase). Significantly, 

CH reversed, to an extent, functional and morphologic injuries and ovarian tissue apoptosis by up-regulating the level 

of Mfn2 and the ratio of Bcl-2/Bax. Furthermore, CH reduced cisplatin-induced mitochondrial dysfunction in ovarian 

tissues.  

Conclusion: The present findings showed that CH inhibited cisplatin-induced POF through interactions between Mfn2 

and Bcl-2/Bax proteins and, possibly, by up-regulation of Mfn2 expression. Ultimately, CH protects ovarian tissues 

from cisplatin-induced apoptosis.  
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Abbreviations: POF, premature ovarian failure; CH, Cistanches Herba (CH); HPLC, high-performance liquid 

chromatography; i.p., intraperitoneal injections; i.g., intragastric injections; FSH, follicle-stimulating hormone; ELISA, 

enzyme-linked immunosorbent assay; H&E, hematoxylin and eosin; TUNEL, TdT-mediated dUTP nick end labeling; 

GAPDH, glyceraldehyde-3-phosphate dehydrogenase; Mfn2, mitofusin 2; cleaved-PARP, poly adenosine 

diphosphate-ribose polymerase; ΔΨm, mitochondrial membrane potential. 

 

Introduction 

     

     Premature ovarian failure (POF) is a disease that results in premature menopause, or the cessation of ovarian 

function before the age of 40. This is characterized by amenorrhea, dysgenesis, hypoestrogenism, and increased levels 

of gonadotropins (Wang et al., 2015). The etiology of POF involves immunologic, genetic, metabolic, environmental, 

and iatrogenic factors (Chen et al., 2015). Chemotherapeutic agents can also lead to POF in women during their 

reproductive years, and can therefore affect their future fertility. The risk for developing POF appears to be dependent 

upon the exact nature of the chemotherapeutic regimen, and includes factors such as drug dosage and patient age 

(Morgan et al., 2013). Recent studies have documented the induction of ovarian dysfunction as a result of cisplatin, 

including menstrual disorders, premature menopause, and infertility (Chen et al., 2015；Li et al., 2013). Moreover, 

experimental studies have shown that cisplatin disrupts estrous cyclicity in mice and rats, reduces ovarian weight, and 

causes ovarian cell apoptosis (Li et al., 2013).  

    Cistanches Herba (CH) is a parasitic plant that primarily grows in North Africa and in Arabic and Asian countries. 

Within traditional Chinese medicine, CH is applied as a tonic and/or treatment for chronic renal diseases, impotence, 

female infertility, morbid leucorrhea, profuse metrorrhagia, and senile constipation (Li et al., 2016; Leong et al., 2015). 

Modern pharmacologic studies have demonstrated that CH exhibits anti-aging properties, improves learning and 

memorization abilities, treats symptoms of Alzheimer’s disease, and enhances the immune system (Li et al., 2016; Gu 

et al., 2016). Furthermore, studies on CH and the regulation of reproductive functions have linked CH to increased sex 

hormone levels as a result of inducing testicular steroidogenic enzymes, up-regulating the gene expression of 

3β-hydroxysteroid dehydrogenase (which is responsible for the synthesis of dihydrotestosterone), and reversing 

reproductive toxicity induced by Leigongteng (Radix et Rhizoma Tripterygii) by decreasing the reproduction-related 

genes DDX3Y, BCL6, and STAT3 (Wang and Chen et al., 2016; Shimoda et al., 2009; Li et al., 2014). Moreover, 

recent studies have demonstrated the protective effects of CH extract and its ability to reduce apoptosis in muscle cells 

(Wat et al., 2016). While CH was shown to improve ovarian weight and increase the expression of estrogen and 

progesterone receptors in a model of rat ovarian functional decline published over 20 years ago (Chen et al., 1995), the 

exact regulating mechanisms in relation to the female reproductive system remain unknown.  

    Therefore, in the present study, our primary focus concerned the protective mechanisms of CH on the female 

reproductive system in a cisplatin-induced POF mouse model. We expect that our research results will contribute to 

identifying and detailing the pharmacologic effects of CH and the mechanisms underlying its actions. Moreover, our 

findings can be used in the clinical application of chemotherapeutic protective agents. 

 

Materials and Methods 

Preparation of CH Extract and Standardization 

 

We obtained dried CH from the First Affiliated Hospital of Liaoning University of Traditional Chinese Medicine. 

We prepared water extracts by boiling 200 g of each sample in 2000 mL of distilled water for 2 hours. We then 

centrifuged the solution at 4000 r/min for 10 minutes. We removed residues using filtration, and evaporated the 
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combined filtrate by heating to obtain a desired concentration of 2.1 g of dried plant equivalent extract/mL (Liang et al., 

2011). We chemically analyzed the CH extract for acteoside and echinacoside using reverse-phase high-performance 

liquid chromatography (HPLC) based on previously published methods (Lu et al., 2013;  Fig. 1 shows the CH results). 

The standard compounds acteoside and echinacoside were purchased from GuangRun Bio Technology (China).  

 

Figure 1: HPLC data for CH. 

(a) and (b). CH (upper panel) and standard sample (lower panel). The peaks indicate the presence of echinacoside and 

acteoside, which validate the authenticity of CH. 

 

Animals and CH Treatment 

Ethics Approval and Consent to Participate 

 

    This study was approved by the Institutional Animal Ethics Committee of Liaoning University of Traditional 

Chinese Medicine, and was conducted in accordance with the “Guide for the Care and Use of Laboratory Animals.”  

    We obtained 40 pathogen-free female Kunming mice at 8 weeks of age and weighing 28-30 g, from the 

Experimental Animal Center of Liaoning University of Traditional Chinese Medicine. The mice were acclimatized to 

standard laboratory conditions (temperature, 22-25°C; relative humidity, 50-60%; and a 12-hour photoperiod with 

lights on from 07:00-19:00).  

We then randomly divided the mice into 4 groups (𝑛=10/group) prior to treatment. Fig. 2 shows the different 

groups. 
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Figure 2: Mouse protocol and treatments. 

 

The mice were divided into 4 groups: (1) the control group, (2) the cisplatin group, (3) the cisplatin + low CH 

group, and (4) the cisplatin + high CH group. We administered CH or normal saline (N.S.) i.g. from Days 1 to 14, and 

administered different concentrations of cisplatin or N.S. i.p. from Days 1 to 7.  

Group 1 was the control group of mice that received daily intraperitoneal (i.p.) injections of normal saline (N.S.) at 

the same volume as with cisplatin for the first week (Days 1 to 7). Additionally, the control group of mice were treated 

daily with N.S. by intragastric injections (i.g.) at the same volume as with CH for 2 weeks, starting at Day 1 and 

continuing until the termination of the experiment. 

Group 2 was the cisplatin group of mice that received cisplatin (QILU Pharmaceutical, China) at a dose of 3.0 

mg/kg for the first 3 days, and 2.0 mg /kg for the remaining 4 days of the first week (Luo et al., 2013). We also treated 

the control group mice with N.S. i.g., for 2 weeks. 

Group 3 was the cisplatin + low CH group of mice that received the same cisplatin treatment as those in Group 2 

while also receiving a CH equivalent of 5 g/kg/day of crude drug (calculated as 10 times the human dose of 0.5 

g/kg/day ) daily for 2 weeks (Li et al., 2014).  

Group 4 was the cisplatin + high CH group of mice that received the same cisplatin treatment as those in Group 2 

while also receiving a CH equivalent of 10 g/kg/day of crude drug (calculated as 20 times the human dose of 0.5 

g/kg/day) daily for 2 weeks (Li et al., 2014).  

    During the cisplatin treatments, we recorded the weights of the mice 3 times: (1) on Day 1 before any of the 

treatments began, (2) 6 hours after the termination of the cisplatin or N.S. i.p. treatment on Day 7, and (3) 6 hours after 

the termination of the experiments on Day 14. After the last weights were taken, blood was collected from each group 

via direct cardiac puncture, and the serum was isolated and stored at -80°C. We first weighed the ovarian tissues from 
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the mice in the 4 groups, and then either stored the ovarian tissues at -80°C for protein analysis, or fixed them in a 4% 

paraformaldehyde solution for morphologic analysis. 

 

Detection of Serum Estradiol and follicle-stimulating hormone (FSH) 

     

We measured serum estradiol and FSH plasma levels using an enzyme-linked immunosorbent assay (ELISA) kit 

(R&D Systems, USA), at an absorbance of 450 nm. We performed each experiment 3 times. 

 

Hematoxylin and Eosin (H&E) Histology 

     

After fixation, we embedded the ovarian tissues in paraffin. We then sectioned and stained the ovarian tissues with 

H&E for general histomorphometric analysis. 

 

Immunohistochemistry  

     

We dewaxed and rehydrated the paraffin slides containing ovarian tissues using xylol and ethanol, and used the 

mitofusin 2/Mfn2 antibody (Abcam, Massachusetts) and UltraSensitive ™ SP IHC kit (Maixin Biotech, China) for 

immunohistochemistry. Two independent and unbiased researchers reviewed and analyzed the results using the 

MetaMorph/DP10/BX41 image analysis system (UIC/Immunohistochemistry Olympus, US/Japan). 

 

TdT-mediated dUTP nick end labeling (TUNEL) Assay of Cellular Apoptosis 

     

We evaluated cellular apoptosis with conventional TUNEL assay using the In Situ Cell Death Detection Kit, POD 

(Roche, USA), counting the number of TUNEL-positive cells using 10 different high-magnification views of each 

ovarian tissue slide. Additionally, we counted the number of positive cells for every 1,000 cells. The apoptosis rate was 

calculated as a percentage (%) = number of positive cells/1,000 × 100% (Wang and Zhao et al., 2016).  

 

Western Blotting Analysis 

     

The ovarian tissue samples were homogenized in a lysis buffer (DINGGUO, China), and protein levels were 

detected using a Pierce BCA Protein Assay Kit (Thermo, USA). We fractioned equal amounts of separated protein 

using SDS-PAGE, and transferred the separated proteins to a PVDF membrane (Bio-Rad, USA). The blots were 

incubated overnight at 4°C with antibodies against cleaved-caspase 3 (SAB, USA), cleaved poly adenosine 

diphosphate-ribose polymerase (cleaved-PARP, SAB, USA), Bcl-2 (Cell Signaling, USA), Bax (Cell Signaling, USA), 

or Mfn2 (Abcam, UK). We then used horseradish peroxidase-conjugated secondary antibodies (ZSGB BIO, China) in 

conjunction with an ECL chemiluminescence detection system (Amersham, UK). Quantification of staining was by 

scanning densitometry, and we normalized the densitometric values for measured proteins to 

glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as a loading control. 
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Transmission Electron Microscopy Study 

 

The ovarian tissues were fixed, post-fixed, and embedded as previously described (Lu et al., 2014). We then 

observed the ultrathin sections under a transmission electron microscope (model RILI H-7500; Hitachi, Japan) at 80 

kV. 

 

ATPase Activities Assay 

    

Na+-K+-ATPase and Ca2+-Mg2+-ATPase activities were measured electrophotometrically by measuring the amount of 

inorganic phosphate release. We then weighed, homogenized, and centrifuged the ovarian tissues, using the supernatant 

for the ATP assay kit (Nanjing Jiancheng Bioengineering Institute, China). The results obtained were measured at 636 

nm. We ultimately calculated the ATP contents in the samples based on the formula provided in the manufacturer’s 

instructions. 

 

Measurement of Mitochondrial Membrane Potential (ΔΨm) 

 

    We assessed mitochondrial membrane potential using fluorescence microscopy after first using the JC-1 

Mitochondrial Membrane Potential Assay Kit (Beyotime Biotechnology, China). The ovarian tissues were weighed, cut, 

ground, and filtered to acquire a single cell suspension according to the method described by Chen et al (2015). The 

cell precipitates were then incubated in JC-1 fluorescent dye in a 5% CO2 incubator for 30 minutes at 37°C. After 

washing the cell precipitates 3 times, we analyzed the mitochondrial membrane potential using a fluorescence 

microscope (Leica, Germany); and measured the green signal of the JC-1 at 530 nm, whereas the measurement of the 

red signal was at 590 nm. 

 

Statistical Analysis 

 

    Each individual experiment was conducted 3 times, and SPSS 15.0 was used for statistical analyses. Data are 

expressed as means ± SD. We analyzed the different groups using 1-way ANOVA and Tukey's method for post-hoc 

comparisons. A P value < 0.05 was considered to be statistically significant. 

 

Results 

Effects of CH on Ovarian Weight and Morphology 

 

    The results of our study showed that cisplatin decreased the body weight of the mice, and significantly reduced 

ovarian weight compared to the same indices in the control group. Significantly, treatment with different doses of CH 

effectively increased both body and ovarian weights (Figs. 3a and 3b). 

We observed follicles at different stages of maturation in the ovaries of the control mice, and the number of 

follicles significantly decreased (especially for small follicles and Graafian follicles) in the atrophied ovaries of the 

cisplatin group. After administration of CH, ovarian morphology significantly improved compared to that of the 

cisplatin group. Specifically, we observed increased numbers of follicles and degrees of maturation (Fig. 3c).  
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Figure 3: Effects of CH on ovarian weight and morphology after cisplatin treatment. 

(a) Weights of the mice in the 4 groups at Days 1, 7, and 14; and analysis of differences using Tukey's method. *p < 

0.05 vs. the cisplatin group; ▲p < 0.01 vs. the cisplatin group. (b) Ovarian weights of the 4 groups at Day 14.  

(c) Morphology of ovarian tissues using H&E staining. 

 

Effects of CH on the Production of FSH and Estradiol 

 

We investigated peripheral FSH and estradiol concentrations, 2 important indices of ovarian function, in order to 

observe the effects of CH on POF induced by cisplatin. We observed a significant elevation in FSH in the cisplatin 

group compared to the control group; however, the FSH levels in the cisplatin + low and cisplatin + high CH groups 

decreased (P< 0.05) (Fig. 4a). Moreover, estradiol was significantly reduced in the cisplatin group compared to the 

control, and treatment with CH increased estradiol levels (Fig. 4b). 

 

Figure 4: Effects of CH on serum FSH and estradiol concentrations after cisplatin treatment. 

(a) FSH levels. (b) Estradiol levels. Note: ANOVA was followed by Bonferroni’s test. Each bar represents the mean ± 

SD (𝑛 = 10/group). 
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CH Reversed Ovarian Tissue Apoptosis Induced by Cisplatin 

     

Because apoptosis of ovarian granulosa cells is an initiating factor in the occurrence of POF and plays a key role 

in the overall condition (Chen et al., 2015), we further analyzed cellular apoptosis in the 4 groups using TUNEL assay 

to detect any protective effects of CH in ovarian tissues. We observed that TUNEL-positive granulosa cells (dark 

brown in color) appeared in the cisplatin group, and that the number of positive cells in the cisplatin + low CH and 

cisplatin + high CH groups was lower than in the cisplatin group (Fig. 5a).  

We also analyzed the activation of caspase 3, which is characteristic of the induction of apoptosis, as well as the 

inactivation of PARP (a DNA repair factor), using western immunoblotting. We observed caspase 3 activation and 

PARP inactivation/cleavage in the cisplatin group (Fig. 5b), and a diminution in the levels of the anti-apoptotic protein 

Bcl-2 in the cisplatin group compared to the control group. Additionally, the levels of the apoptosis-promoting protein 

Bax were higher in the cisplatin group compared to the control group (Fig. 5c). Notably, treatment with different doses 

of CH effectively reversed the activation of caspase 3, the inactivation of PARP, and the ratio of Bcl-2/Bax (Figs. 5b 

and 5c); and this reversal was similar to that observed for the TUNEL assay results. 

 

Figure 5: Effects of CH on ovarian cell apoptosis in POF resulting from cisplatin treatment. 

(a) Apoptosis was determined by using TUNEL assay in ovarian tissues. We observed light staining of the granulosa 

cells in the cytotrophoblasts of the control group and in the 2 CH treatment groups, with deeper-staining granulosa cells 

extant in the cisplatin group. A comparison of the apoptotic cell rates is shown in the right-most panel. (b) 

Representative images of Western blots for caspase 3 and cleaved PARP. (c) Representative images of Western blots 

for Bcl-2 and Bax. 

 

Protective Effects of CH in POF: Association with Reversing Mitochondrial Dysfunction 

     

Chen et al. (2015) established that cisplatin induces mitochondrial dysfunction, resulting in POF. To further 

examine the protective effects of CH, we used transmission electron microscopy to detect mitochondrial morphology in 

ovarian tissue. In the control group, mitochondria were clear and numerous. Moreover, the mitochondria were round, 

oval, or rod-like in shape with clear and regularly arranged cristae. In contrast, the cells in the cisplatin group showed 

obvious structural abnormalities, including shrunken size and nuclear deformities. The number of mitochondria was 

also reduced in the cisplatin group; and the mitochondria exhibited swelling, vacuolization, and disorganization of the 

cristae. It should be noted that the physical appearance of the cells in the cisplatin + low and high CH groups were 
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noticeably restored, and had an increased number of mitochondria and a relatively regular arrangement of 

mitochondrial cristae (Fig. 6a). 

  We measured the ATP content of all ovarian tissue samples to evaluate the degree of mitochondrial dysfunction. 

We found that Na+-K+-ATPase and Ca2+-Mg2+-ATPase activities were decreased in the cisplatin-treated group; whereas, 

treatment with CH significantly restored the activities of these enzymes (Na+-K+-ATPase activity: cisplatin vs. cisplatin 

+ low CH, P < 0.05; cisplatin vs. cisplatin + high CH, P < 0.01. Ca2+-Mg2+-ATPase activity: cisplatin vs. cisplatin + 

low CH, P < 0.05; cisplatin vs. cisplatin + high CH, P < 0.01) (Fig. 6b). When we linked mitochondrial membrane 

potential (ΔΨm) to mitochondrial function using JC-1 fluorescent dye, we found a significant reduction (represented as 

green coloring) in the ΔΨm of the cisplatin group compared to the control group (red). Treatment with different doses 

of CH effectively reversed decreases in ΔΨm, similar to those observed with the ATPase activity assay (Fig. 6c). 

Previous studies have suggested that mitochondrial dysfunction is correlated with a reduction in levels of Mfn2 (a 

conserved dynamin-like GTPase located in mitochondria) in ovarian tissues (Chen et al., 2015). As such, we examined 

the expression of Mfn2, and determined that Mfn2 was exclusively present in the cellular cytoplasm of all groups; 

however, we also observed weaker immunostaining signals in ovarian tissues from the cisplatin group relative to the 

control group and the 2 CH-treated groups (particularly in the granulosa cells) (Fig. 6d). To assess the differential 

expression of Mfn2 in the 4 groups, we first determined Mfn2 levels in the ovarian tissues using Western 

immunoblotting, and our results were consistent with those from the immunohistochemical assay (Fig. 6e). 

 

Figure 6: Protective effects of CH in POF are associated with reversing mitochondrial dysfunction. 

(a) Ultrastructure of ovarian tissue as detected by transmission electron microscopy. In the control group, the 

mitochondria were greater in number and clearer than in the CH-treated groups. The mitochondria in the control group 

were round, oval, or rod-like, with clear and regularly arranged cristae. The mitochondria in the cisplatin group were 

reduced in number, swollen, vacuolated, and showed disorganized cristae. The mitochondria in the cisplatin + high CH 

group were increased in number, and the appearance and overall morphology of mitochondria and cristae were 

markedly restored. " " indicate mitochondria. 

(b) Na+-K+-ATPase and Ca2+-Mg2+-ATPase activities were assessed electrophotometrically by measuring the amount of 

inorganic phosphate release. (c) Mitochondrial membrane potential (ΔΨm) as detected by using JC-1.  

(d) Mfn2 distribution was exhibited by immunohistochemistry. (e) Representative images of Western immunoblotting 

for Mfn2. 
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Discussion 

 

     Ovarian cellular function is characterized by rapid turnover, and there is a potential similarity to cancer cells 

because both cell types are primary targets for chemotherapeutic agents (Yucebilgin et al., 2004). Among the numerous 

cell types in the ovary, the apoptosis of granulosa cells is thought to be an initiating factor in the occurrence of POF 

(Chuai et al., 2012; Del Mastro et al., 2011; Zhang et al., 2015). In the present study, we observed typical granulosa 

cell apoptosis in the follicles of cisplatin-treated mice, following other pathogenic changes such as ovarian weight gain, 

a reduction in follicular number, and hormonal changes (i.e., an increase in FSH and decrease in estradiol 

concentrations in blood), consistent with previous reports (Chen et al., 2015; Morgan et al., 2013; Li et al., 2013). 

    While the adverse effects of chemotherapeutic agents on ovaries are obvious, chemotherapy is still an appropriate 

and effective treatment for various cancers. Thus, it is essential to prevent adverse chemotherapeutic effects as much as 

possible in female cancer patients. The results from this study showed that CH protected ovaries from cisplatin-induced 

ovarian damage; e.g., mice that received oral CH treatments while simultaneously receiving cisplatin, or that received 

CH treatments for an additional week after the end of the cisplatin administration, did not experience the ovarian 

weight loss induced by cisplatin. In addition, treatment with CH significantly reversed cisplatin-induced apoptosis of 

ovarian follicles, inhibited the cisplatin-induced augmentation in FSH, and attenuated the cisplatin-induced diminution 

in estradiol. These findings are in accordance with the results achieved by a classical herbal prescription used in 

traditional Chinese medicine, the Tongmai Dasheng Tablet. The Tongmai Dashen Tablet uses a 

tripterygium-glycoside-induced POF model, in which CH is a crucial component (Fu et al., 2012). However, the 

mechanism(s) underlying the protective effects of CH remains unknown.  

  Cisplatin plays a vital role in the apoptosis of granulosa cells in ovarian follicles, which in turn can lead to overall 

follicular atresia (Chen et al., 2015; Li et al., 2013). DNA damage induced by cisplatin generates oxygen free radicals, 

and overproduction of oxygen free radicals induces oxidative stress, which is in turn responsible for cisplatin-related 

tissue toxicity (Cepeda et al., 2007). Granulosa cells, which typically exhibit rapid turnover, are extremely sensitive to 

cytotoxic chemotherapeutic agents; and this can inhibit the growth of sufficient numbers of mature oocytes required for 

normal fertility. In addition, oxidative stress can lead to disordered mitochondrial metabolism, which is characterized 

by a decline in mitochondrial membrane potential. Previous studies have demonstrated that CH protects against 

myocardial ischemia/reperfusion injuries by increasing mitochondrial respiration and inducing mitochondrial 

uncoupling, thereby eliciting a cellular antioxidant response (Leong et al., 2015; Wong et al., 2013). In our study, CH 

effectively increased the number of mitochondria, and restored mitochondrial morphology, ATPase activities 

(Na+-K+-ATPase and Ca2+-Mg2+-ATPase activity), and membrane potential (ΔΨm).  

  Recent studies have shown that the functional ovarian damage observed in POF induced by cisplatin is related to 

inadequate expression of Mfn2 (Chen et al., 2015). Mfn2, located on the outer mitochondrial membrane, is involved in 

the process of mitochondrial fusion and is necessary for the maximization of ATP production (Chen et al., 2015; 

Koshiba et al., 2004). Low in-vitro expression of Mfn2 attenuated cleavage rates in mouse zygotes and subsequent 

blastocyst formation, and caused mitochondrial dysfunction as confirmed by alterations in ATP and mtDNA levels, as 

well as mitochondrial membrane potential (Zhao, et al., 2015). In addition, Mfn2 plays a vital role in cellular activities 

and apoptosis; e.g., a deficiency in Mfn2 induced cellular apoptosis in mouse embryos, hippocampal neurons, and rat 

spinal cord tissue (Zhao, et al., 2015; Peng et al., 2015; Zhang et al., 2015). Furthermore, the depletion of Mfn2 can 

lead to apoptosis, usually via Bcl-2-signaling pathways. The latter may in turn promote mitochondrial fission during 

apoptosis by inhibiting fusion or accelerating fission events (Peng et al., 2015). In our study, cisplatin-induced 

apoptosis within the ovary, especially in granulosa cells, was followed by Mfn2 down-regulation; however, CH then 
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up-regulated the expression of Mfn2 in the ovarian tissues of cisplatin-treated mice, which was in concordance with the 

changes in anti-apoptotic molecules such as Bcl-2 and in pro-apoptotic molecules such as Bax.  

 

Conclusion 

 

In this study, we demonstrated that CH inhibited cisplatin-induced POF, and determined that CH up-regulated 

Mfn2 expression and altered mitochondrial membrane structure via interaction with Bcl-2/Bax proteins; thereby 

protecting ovarian tissues from cisplatin-induced apoptosis. CH may therefore be a useful alternative treatment for 

women in reducing chemotherapy-induced POF.  
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