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Abstract 

 
Background: Existing populations of Cryptocarya latifolia (Lauraceae) are rapidly declining as a consequence of their substitutive 

use for Ocotea bullata. The uncontrolled and excessive removal of the bark and roots of this species has led to the death of many of 

these plants and may eventually result in its depletion in the natural habitat.  

Materials and Methods: The secondary metabolites from the leaves and fruits of C. latifolia were extracted using solvents of 

various polarities, isolated using column chromatography and identified using spectroscopic techniques. The in vitro free radical 

scavenging activity (antioxidant capacity) of selected phytocompounds at varied concentrations was determined by the 2, 2-

diphenyl-1-picrylhydrazyl (DPPH) assay. A propagation study of the species was also conducted. 

Results: The compounds isolated from the plant were the novel compound, α-pyrone (5-hexyltetrahydro-2H-pyran-2-one) and 

known compounds quercetin-3-O-rhamnoside, β-sitosterol, copaene and nerolidol. The radical scavenging activity of the isolated 

compounds indicated moderate to good anti-oxidant activity. Treatment of explants with BAP: NAA at 1.0:0.01 mg L-1 produced the 

highest percentage of shoots (94%) and longest shoot length (8.06 mm).   

Conclusion: This study validates the ethno-medicinal use of the plant and supports the replacement of bark and roots by leaves and 

fruits for the management and conservation of this declining plant species. The benefits of consuming the fruits are two-fold as they 

can also contribute to the recommended dietary allowances of most essential elements for the majority of individuals.  
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Introduction 
 

 Lauraceae is a family comprising 50 genera and 2500-3000 species (Bannister et al., 2012; Cuca et al., 2013). The family 

consists mainly of aromatic evergreen trees and shrubs distributed worldwide (Miller and Tuck, 2013). The genus Cryptocarya is 

commonly found in some parts of Southern Africa. Cryptocarya latifolia (broad-leaved quince) is found in the KwaZulu-Natal and 

Eastern Cape provinces of South Africa where the plant is believed to possess similar medicinal properties to Ocotea bullata, a 

highly endangered species.  

 In South Africa,  O. bullata and now C. latifolia (Zschocke and van Staden, 2000), are used by traditional healers for the 

treatment of various ailments including headaches, morning sickness, pulmonary disease, tuberculosis and bacterial and fungal 

infections (Drewes et al., 1995; Wang et al., 2009; Sabitha et al., 2009). As a result of its substitutive use for O. bullata, C. latifolia 

is massively exploited and is on the list of declining indigenous medicinal plant species in South Africa. Many plants are exploited 

by traditional healers within a large informal business system (Van Wyk, 1997) since they are collected illegally through 

unsustainable harvesting techniques, resulting in the depletion of wild populations (Cunningham, 1993).  

 This study aimed at isolating the phytochemical constituents of the leaves and fruits of C. latifolia and comparing their 

biological activity to that of compounds previously isolated from the bark and root to evaluate the substitutive use of the leaves and 

fruits in traditional medicine as a conservation strategy. Besides the medicinal significance of C. latifolia, it is also of economic 

importance as a food source due to the fruits being eaten by humans. An elemental analysis of the fruits was also conducted to assess 

for nutritional value. Because of the conservation status of C. latifolia due to over-exploitation, the development of appropriate 

propagation protocols to enhance its conservation is vital. Plant tissue culture, which is the in vitro mass-propagation of plants on 

nutrient media under aseptic conditions, has become the most widely used technique for rapid propagation of plants in need of 

conservation (Bhojwani and Razdan, 1986; Chawla, 2002; Rout et al., 2006). Therefore, this study also aimed to develop an efficient 

shoot multiplication protocol for sustainable mass propagation of C. latifolia.  

 

 

Materials and Methods 
General Experimental Procedure 

Sample Collection    

 

 The leaves and fruits of C. latifolia were collected in December, 2012 from the University of KwaZulu-Natal (UKZN)  
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Botanical Gardens at the Pietermaritzburg campus in the province of Kwazulu- Natal, South Africa while the potted plants of C. 

latifolia were purchased from Tropical Nursery (Durban, South Africa). These were identified by herbarium technician, Mr Edward 

Khathi, from the Ward Herbarium, School of Life Sciences, UKZN (Westville).  

 The collected leaves and fruits were separately air dried at room temperature to constant weight in a drying room. Thereafter, 

they were separately crushed using a domestic blender (Russell Hobbs) and kept in plastic containers in a refrigerator at 4 ºC for 

further analysis. The potted plants were transferred to a shade house facility and watered twice daily by an automatic sprinkler for 3 

min. In addition, the plants were treated with systemic fungicides and nutrient mixtures weekly.  

 

 

 

Characterisation and Quantification Methods  

 

 NMR spectra (1D and 2D) were recorded in deuterated MeOH (CD3OD) and deuterated chloroform (CDCl3) at room 

temperature using a Brucker AvanceIII 400 MHz and 600 MHz spectrometer with tetramethylsilane (TMS) as an internal standard. 

IR spectra were recorded using a Perkin Elmer Universal ATR Spectrometer. UV spectra were recorded using the UV-Vis-NIR 

Shimadzu UV-3600 spectrometer with MeOH as a solvent. GC-MS data were recorded on an automated GC-MS (split-less mode) 

equipped with a DB-5SIL MS fused silica capillary column (30 m x 0.25 mm i.d., 0.25 µm film thickness). Helium (0.70 mL min -1) 

was used as a carrier gas and acetonitrile (ACN) was used to dissolve the sample. 1 µL of each sample solution was injected into the 

GC-MS.  The injector was kept at 250 °C whilst the transfer line was at 280 °C. The column temperature was held at 60 °C for 2 

min, and then ramped to 280 °C at 20 °C min-1 where it was held for 10 min. The MS was operated in the EI mode at 70 eV. Melting 

points (uncorrected) were recorded on an Ernst Leitz Wetzlar micro-hot stage melting point apparatus. All chemicals used were 

supplied by Merck and Sigma Chemical Companies and were of analytical-reagent grade. All spectral data obtained were compared 

with those reported in literature for identification of known compounds. 

 

 

Phytochemical Analysis 

 

 Ground leaves (560.6 g) and fruits (50.35 g) were sequentially extracted with hexane, dichloromethane (DCM) and methanol 

(MeOH) for 72 hr each on an orbital shaker set at 120 rpm. Crude extracts were filtered using Whatman No. 1 filter paper then 

concentrated under reduced pressure using a rotary evaporator. The crude extracts were transferred into beakers and further dried in 

a drying room for 48 hr. The beakers were then sealed with plastic paraffin film (Parafilm) and stored in a refrigerator at 4 ºC for 

further analysis 

 Crude extracts were subjected to column chromatography using suitably sized columns and silica gel (kieselgel 60, 0.063-

0.200 mm, 70-230 mesh ASTM). Fractions collected were monitored by TLC (Merck silica gel 60, 20 x 20 cm F254 aluminium 

sheets), visualized using anisaldehyde spray reagent (97: 2: 1; MeOH: conc. H2SO4: anisaldehyde) and analyzed under UV (254 

nm). For the crude methanol extract from leaves, partitioning was performed in a separating funnel before isolation. The aqueous 

methanol extract was partitioned for 12 hr in triplicate with equal volumes of DCM. The collected DCM fractions were combined, 

concentrated using a rotary evaporator and subjected to column chromatography. The aqueous MeOH extract was subjected to the 

same procedure using ethyl acetate. 

 The ethyl acetate fraction from the MeOH extract of the leaves was separated using a hexane: ethyl acetate solvent system 

starting with 100% hexane which was gradually increased by 10% to 100% ethyl acetate in hexane. Ten fractions containing 50 mL 

each were collected from every solvent system. The fractions collected at 100% ethyl acetate, which had the same TLC profiles, 

were combined to give fraction A. This fraction was rechromatographed using an ethyl acetate: methanol (80:20) solvent system and 

purified to yield compound 1 (72 mg).  

 The same solvent system (hexane: ethyl acetate) was used to separate the DCM fraction (main) from the methanol extract of 

the leaves using column chromatography. Fractions with the same TLC profiles were combined and purified. Compound 2 (28 mg), 

a white crystalline solid, was isolated in fraction 16 (90:10, hexane: ethyl acetate) and oily substance, compound 3 (158 mg) was 

isolated in fractions 35-49.  

 The crude hexane and DCM extracts from the leaves showed similar spots on the TLC plate therefore these extracts were 

combined then subjected to column chromatography. The mass of the combined extracts was 21.04 g. Initially elution was effected 

using 100% hexane which was stepped by 5% to 100% ethyl acetate. Ten fractions of 50 mL were collected for each solvent system. 

Two fractions (33 and 34) yielded compound 4 (17.8 mg). Fractions 31-32 were combined and rechromatographed to give an oily 

compound, compound 5 (450 mg), which eluted with a hexane: ethyl acetate (95:5) solvent system.    

 The methanol extract (4.56 g) from the fruits was subjected to column chromatography using a hexane: ethyl acetate solvent 

system, starting with 100% hexane that was stepped by 10% to 100% ethyl acetate. Ten fractions of 50 mL each were collected from 

every solvent system. The fractions collected at 100% ethyl acetate yielded compound 1 (38.8 mg). 

The crude hexane and DCM extracts from the fruits showed similar TLC profiles therefore they were combined. The column was 

eluted with 100% hexane which was stepped by 5% to 100% ethyl acetate. Compound 2 (12 mg) was eluted with a hexane: ethyl 

acetate (85:5) solvent system.  

 

Anti-Oxidant Activity 

 

 The antioxidant activity of the isolated compounds was determined using the DPPH radical scavenging assay as described by 

Murthy et al. (2012) with little modification. A volume of 150 μL of a methanolic solution of each compound at varying 

concentrations (240, 120, 60, 30 and 15 µg mL-1) was mixed with 500 µL of methanolic DPPH solution (0.1 mM). These solutions 

were incubated in the dark for 30 min at room temperature thereafter the absorbance was recorded at 517 nm against the blank 

(MeOH) with the aid of a UV spectrophotometer. Ascorbic acid was used as the standard and a methanolic DPPH solution without 

phytocompounds was used as the control. The percentage scavenging activity was calculated according to the equation below:  
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% scavenging activity      =        x 100 

Where Ac = Absorbance of Control, As = Absorbance of Sample. 

 

 

 Elemental Analysis 

 

 The analytical reagents used were of analytical reagent grade and were supplied by Merck and Sigma Chemical Companies. 

Double distilled water was used throughout the experiments. All the glassware used were washed with 6.0 M HNO3 and rinsed with 

double distilled water to remove contaminants. 

 Digestion of fruits was achieved with the aid of a CEM MARS microwave digester (Model No. Mars6) by means of Teflon 

(TFM) lined vessels (HF 50). In order to get accurate results, five replicate digestions were done. Approximately 0.5 g of the fruit 

samples were accurately weighed and transferred into the vessels, to which, 10 mL of 70% HNO3 was added and sealed for 

digestion. The power was set at 1600 W and the temperature was held at 210 °C for 30 min. After the digestion was completed, the 

power was reduced gradually until cooled.  The digests were then transferred to 50 mL volumetric flasks and diluted with double 

distilled water to the graduation mark. These were then analysed for As, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Ni, Pb, Se and Zn by 

Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES). The accuracy of the elemental analysis was achieved by 

use of the Certified Reference Material (CRM), lyophilized brown bread (BCR 191), from the Community Bureau of Reference of 

the Commission of the European Communities. The emission lines were selected according to minimal spectral interferences.  

 

Biotechnological Study 

  

 Stem segments of C. latifolia (8-10 cm) containing nodes were excised from the mother plants in the shadehouse. They were 

rinsed using tap water to remove dust particles and one-third of the leaf sections were removed. Thereafter, individual nodal 

segments were decontaminated in a laminar flow hood using various sterilants (70% ethanol, 1.75% NaOCl and Tween20®), 

antibiotic (Ampicillin®) and fungicides (Celest® and Heritage®). Subsequently, the cut ends of nodal segments were trimmed with a 

sterile blade and placed onto nutrient media comprising full strength Murashige and Skoog (1962) basal salt medium, sucrose (30 g 

L-1), agar (10 g L-1) and supplemented with various concentrations and combinations of plant growth regulators (PGRs). Prior to the 

addition of agar, the pH of all media was adjusted to 5.8. PGR-free media was used as a control. The media was autoclaved at 121 
oC and 1.2 kg cm-2 for 20 min. One nodal segment per culture tube was used. Sixteen explants were used for each treatment. The 

cultured explants were placed in a growth room at 25 oC, 16:8 hour light:dark photoperiod under diffuse white light at 55 µmol m-2 s-

1 and observed every three days for bud break (BB).  

 

 

Statistical Analysis 

 

 Percentage shoot length and shoot numbers were analysed using one way ANOVA and Tukey’s Post-Hoc (HSD) test using the 

Statistical package for the Social Sciences (SPSS) (version 21). 

 

 

Results and Discussion 
Phytochemical Analysis 

 

 Two known compounds, quecetin-3-O-rhamnoside (1) and β-Sitosterol (2) were isolated as a yellow amorphous solid and 

white crystalline solid both from the leaves and fruits of the plant, respectively. Their structures were identified by comparison of 

their spectral data with that from literature (De-Eknamkul and Potduang, 2003; Ma et al., 2005; Park et al., 2011).  Compounds 3 and 

5 were isolated with a mass of 158 mg and 450 mg, respectively. These compounds were the major components of the essential oil 

from C. latifolia leaves. Their structural identification was by GC-MS according to the fragmentation patterns and by comparison 

with the National Institute of Standard and Technology (NIST 05, 2005) database and literature (Klopell et al., 2007; Xie et al., 

2012). Compound 3 was identified as copaene while compound 5 was identified as nerolidol. 

Compound 4 (Figure 1), a yellow amorphous solid with a mass of 17.4 mg, was elucidated using a combination of 

different spectroscopic methods; UV (CH3OH) 223 nm; IR υmax (cm-1) 2923 (C-H), 1714 (-C=O), 1167 (C-O); 1H-NMR (CDCl3, 400 

MHz) δ ppm; 3.99 (2H, dd, J = 2.42, 5.86 Hz, H-6), 2.33 (2H, t, J = 0.68 Hz, H-3),  1.69 (2H, m, H-4), 1.59 (1H, m, H-5),  1.35 to 

1.25 (m, H-7, H-8, H-9, H-10 and H-11), 0.91 (3H, t, J = 7.42 Hz, H-12);  13C-NMR (CDCl3, 400 MHz) δ ppm; 173 (C-2), 33.8 (C-

3), 24.3 (C-4), 38.6 (C-5), 66.7 (C-6), 29.6 (C-7), 23.7 (C-8), 28.7 (C-9), 30.3 (C-10), 22.8 (C-11), 10.8 (C-12); GC-MS m/z; 185 

(M+ + 1), 129,  99.0.  
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Figure 1: Structure of α-Pyrone (4) isolated from C.latifolia leaves 
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 The 1H-NMR spectrum of compound 4 showed a resonance at δH 3.99 (2H, dd, J = 2.42, 5.86 Hz, H-6) and a multiplet 

resonating at δH 1.59 (1H, H-5). The proximity and position of these protons was confirmed by the COSY experiment. The triplet at 

δH 2.33 (2H, t, J = 0.68 Hz, H-3) correlated with the carbon resonance at δC 33.8 as confirmed by the HSQC experiment and with the 

carbon at δC 24.3 (C-4) in the HMBC experiment. The resonance at δH 1.69 (2H, m, H-4) was assigned to this position due to HSQC, 

COSY and HMBC correlations. A single methyl resonance at δH 0.91 (3H, t, J = 7.42 Hz, H-12) and five methylene resonances 

between δH 1.35 to 1.25 (H-7, H-8, H-9, H-10 and H-11) indicated the presence of a hydrocarbon side chain. The 13C-NMR 

spectrum of compound 4 showed 11 carbon signals. The quaternary carbon resonance at δC 173 (C-2) as indicated by the DEPT (90 

& 135) spectra was due to the carbonyl functional group. The DEPT (90 & 135) spectra also confirmed the presence of a methine 

group at δC 38.6 (C-5). The IR spectrum of compound 4 showed a band at 2923 cm-1 due to the C-H stretching vibration, a sharp 

band at 1714 cm-1 due to the presence of the carbonyl group (-C=O) and a band at 1167 cm-1 confirming the presence of a C-O bond. 

The UV spectrum showed a peak at 223 nm characteristic of lactone absorption. The GC-MS spectrum showed molecular ion peak 

at m/z 185 (M+ + 1) therefore, compound 4 was identified as α-Pyrone (5-hexyltetrahydro-2H-pyran-2-one), a novel compound with 

molecular formula of C11H20O2. 

 

 

Antioxidant Activity 

 

 The DPPH radical scavenging assay is the most widely used method for testing the ability of plant extracts to scavenge free 

radicals generated from the DPPH reagent (Dahech et al., 2013). Figure 2 shows the anti-oxidant capacity of the various compounds 

isolated from C. latifolia using the DPPH free radical scavenging assay. The results show that the anti-oxidant capacity of the 

compounds is dependent on concentration similar to the standard (ascorbic acid). 

 All the compounds except β-sitosterol (2) exhibited good anti-oxidant activity. Therefore, β-sitosterol was omitted from the 

figure and further discussions. Quercetin-3-O-rhamnoside (1) showed percentage scavenging inhibition between 92-98% at all 

concentrations tested. Similarly, 5-hexyltetrahydro-2H-pyran-2-one (4) was also found to have 91% inhibition at a higher 

concentration (240 µg mL-1), however, at a lower concentration (15 µg mL-1) it showed 73% inhibition, indicating good oxidative 

effect at high concentrations. Copaene (3) was also found to exhibit anti-oxidant activity, though it was lower than the other 

compounds tested. Similarly, nerolidol (5) has free radical scavenging activity with highest inhibition at 240 µg mL-1.  This assay 

confirms the radical scavenging abilities of the compounds isolated from the leaves of C. latifolia supports its use in reducing 

oxidative stress in the body.  

 

 

 

 

 
 

Figure 2: Anti-oxidant activity of compounds. 

 

Medicinal Significance of Isolated Compounds 

 

 Quercetin-3-O-rhamnoside is known to have anti-influenza and anti-diarrheal activity (Choi et al., 2009) and it is used for the 

treatment of stage I hypertension as reported by Edwards et al (2007). β-sitosterol is reported to modify the level of cholesterol 

concentration in cancer membranes, thereby inhibiting the viability of cancer-cell growth in the stomach, lungs and breast (Sosińska 

et al., 2013). Nerolidol is used as a topical skin penetration enhancer for the delivery of therapeutic drugs. Nerolidol also possesses 

anti-fungal, anti-malarial and anti-ulcer activity and is cytotoxic on renal cell adenocarcinoma (Klopell et al., 2007; Sperotto et al., 

2013). Copaene is reported to possess anti-hepatotoxic activity (Vinholes et al., 2013).  
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Elemental Analysis 

 

 The accuracy of the method for elemental analysis was measured by comparing results obtained with certified results (Table 

1). The values for Fe, Mn, Cu and Zn are certified whilst those for As, Mg, and Ca are suggestive therefore no uncertainties are 

provided for these elements. All the values were found to be in agreement with the CRM values thereby validating the method. The 

concentration of elements in C. latifolia fruits were found to be in increasing order of Pb < Cr < Se < Ni < Cu < Zn < Mn < Fe< Mg 

< Ca. Elements that were not detected were As, Cd, and Co because their concentrations were below the detection limit of the 

instrument.  

 

Table 1: Comparison of measured and certified values in the certified reference material (lyophilized brown bread (BCR 191). 
 

            Concentration* 

Elements Measured** Certified** 

Fe 40. 6 1.2 g g-1 40.7  2.3 g g-1 

Mn 20.3  0.6 g g-1 20.3 0.7 g g-1 

Cu 2.6  0.1 g g-1 2.6  0.1 g g-1 

Zn 19.5 0.4 g g-1 19.5  0.5 g g-1 

As 23.1 mg g-1 23.0 mg g-1 

Mg 0.50 mg g-1 0.51 mg g-1 

Ca 0.41 mg g-1 0.40 mg g-1 

*Based on dry mass, **Mean  S.D, at 95% confidence interval, n = 4. 

 

 The elemental distribution in the fruit was compared to Dietary Reference Intakes (DRIs) (Table 2).  The table shows the 

contribution of 50 g dry mass (DM) of C. latifolia fruits to the nutritional requirements of most individuals for most elements.  

 People from rural provinces tend to depend on staple crops such as wheat and rice for their nutritional needs because they 

cannot afford to purchase or cultivate vegetables and fruits, as a result, malnutrition is common. In South Africa, rural families live 

near wild fruit-bearing trees; they can consume the wild fruits along with these staple crops to obtain a balanced diet.  Table 2 shows 

that consumption of 50 g of C. latifolia fruits contributes about 8% towards the RDA for Ca. Calcium is an essential element which 

helps strengthen bones and its deficiency can lead to poor blood clotting and osteoporosis (Dorozhkin and Epple, 2002). The fruits of 

C. latifolia can be utilized to supplement the body with the required amount of Ca needed for a healthy life, especially for people 

that consider their source of Ca from milk unfavourable due to lactose intolerance.  

 

Table 2: Dietary Reference Intake (DRI) – Recommended Dietary Allowance (RDA) and Tolerable Upper Intake Levels (UL) of 

elements for most individuals – compared to average concentration of elements (n = 4) in the fruits. 

 
Element Average Concentration (mg/50 

g, DM) 

        DRI (mg/day) Estimated 

Contribution to RDA 

(%) RDA UL 

Ca 82.9 1000-1300 2500 6.4-8.3 

Cr 0.02 0.024-0.035 ND* 57-83 

Cu 1.40 0.9 8.00 156 

Fe 6.00 8-18 45.0 33-75 

Mg 55.9 310-320 350 17-18 

Mn 3.70 1.6-2.3 9.00 161-231 

Ni 0.43 ND 1.00 ND 

Pb 0.01 ND ND ND 

Se 0.12 55 400 0.2 

Zn 3.18 8-11 34.0 29-40 

* ND- Not determined. 

 

In 2005, the Fe status of children under the age of 1-9 years from rural and informal urban areas of South Africa was 16% 

(Labadarios, 2007). Consumption of C. latifolia fruits can contribute to alleviating this problem as 50 g of the fruits contributes 

about 33-75% towards the RDA for this element (Table 2). Zinc being the only metal present in all classes of enzymes is distributed 

all over the human body and it helps to enhance learning (Takeda, 2001). Consumption of 50 g of C. latifolia fruits may contribute 

29-40% towards the RDA for this element. Manganese was found to exceed the RDA for this element but not the Tolerable Upper 

Intake level (UL) therefore it is likely to pose no risk of adverse effects. Similarly, the elements Cr, Ni, Pb and Se were all found to 

conform to the RDAs and could contribute to the RDAs for these elements. 

 The present study on the fruits of C. latifolia has demonstrated that the fruits are a good source of important dietary elements, 

which are needed for normal growth and development, especially to vulnerable communities who have closer access to this plant.  

 

Biotechnological Study 

 

 The results showed that explants treated with PGRs (cytokinins and auxins) had a better shoot response compared to the 

control (Figure 3). This indicates the influence of PGRs in shoot induction and has been reported in other studies (Hudson et al., 

2002; Renukdas et al., 2010).  However, the number of explants forming shoots in BB1, BB2 and BB3 were lower (41%, 71% and 

52%, respectively) than the number of explants treated with combination PGRs i.e. BB4, BB5 and BB6 (76%, 94% and 82%, 

respectively). This revealed the greater effects of combining PGRs in promoting shoot development which was also reported in other 
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studies (Shaik et al., 2010). The results also showed that the number of shoots formed per explant was not dependent on the different 

concentrations of the combination PGRs because significant differences were not observed amongst these treatments. According to 

Shokri et al. (2012) the concentration of cytokinin (BAP) or auxin (NAA) at higher or lower amounts influences shoot development. 

Similarly Rout et al. (2006) recommended the use of the cytokinin BAP at moderate concentrations to induce shoots. It was recorded 

that BB5 resulted in the highest percentage of explants forming shoots (94%) compared to the other treatments and the control. The 

highest average number of shoots forming per explant is only one and this was found for treatments BB2, BB4, BB5 and BB6 (data 

not shown). But the best shoot length was achieved in BB5 (Table 3). Thus, BB5 could be a suitable treatment for in vitro bud break 

in C. latifolia; however, multiplication of the shoots using various PGR combinations and concentrations needs further investigation. 

 
Figure 3: Effect of various combinations and concentrations of cytokinins and auxins on bud break in C. latifolia after four weeks of 

culture. Bars above each column represent mean ± SD. 

Where; 

BB1: Bud Break treatment with 0.5 mg L-1 BAP 

BB2: Bud Break treatment with 1.0 mg L-1 BAP      

BB3: Bud Break treatment with 2.0 mg L-1 BAP      

BB4: Bud Break treatment with 0.5 mg L-1 BAP: 0.01 mg L-1 NAA      

BB5: Bud Break treatment with 1.0 mg L-1 BAP: 0.01 mg L-1 NAA  

BB6: Bud Break treatment with 2.0 mg L-1 BAP: 0.01 mg L-1 NAA                                                                           

Table 3: Effect of various combinations and concentrations of cytokinins and auxins on shoot length in C. latifolia 
 

Bud break (BB) treatment Average shoot length per explant (mm) 

Control 0.25a ± 0.6 

BB1 1.63ab ± 2.1 

BB2 2.34ab ± 2.3 

BB3 2.06ab ± 2.6 

BB4 3.44b ± 3.0 

BB5 8.06c ± 3.7 

BB6 3.16b ± 2.3 

Different letters in a column are significantly different at P<0.05. Standard deviations are included after each mean value. 

 

 

Conclusion 

 

 The study investigated the phytochemical constituents in the leaves and fruits of C. latifolia. The compounds isolated were 

quercetin-3-O-rhamnoside (1), β-sitosterol (2) copaene (3), α-pyrone (4) and nerolidol (5).  The radical scavenging activities of the 

isolated compounds indicate that all compounds, except β-sitosterol, exhibit good anti-oxidant activity compared to ascorbic acid. 

The analytical study conducted on the fruits of C. latifolia indicates that they are a good source of important dietary elements and 

may contribute significantly to the diet. The biotechnological study, showed bud break success in nodal explants using various media 

formulations, however, the combination of BAP:NAA at 1.0:0.01 mg/L in full strength MS medium (4.4 g/L) supplemented with 

sucrose (30 g/L) and solidified with agar (10 g/L) produced the most explants (94%) that formed new shoots. This study has 

provided a bud break protocol that can be used to generate C. latifolia shoots for medicinal or conservation purposes, it validates the 

ethno-medicinal use of the plant and supports the replacement of bark and roots by leaves and fruits for the management and 

conservation of this declining plant species. 
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