ANTI-INFLAMMATORY AND METABOLIC EFFECTS OF COFFEA CANEPHORA EXTRACT IN DIABETIC RATS: INSIGHTS FROM TNF-Α REDUCTION AND INSULIN SENSITIVITY INDICES

Authors

  • Jekson Martiar Siahaan Institut Kesehatan Deli Husada Deli Tua
  • Endy Juli Anto
  • Tengku Muhammad Fauzi
  • Sumihar MR Pasaribu Department of Biochemistry, Faculty of Medicine, Institut Kesehatan Deli Husada Deli Tua, Indonesia;
  • Hana Isal Salina Ginting Department of Parasitology, Faculty of Medicine, Institut Kesehatan Deli Husada Deli Tua, Indonesia
  • Friska Ernita Sitorus Department of Medical-Surgical Nursing, Faculty of Nursing, Institut Kesehatan Deli Husada Deli Tua, Indonesia
  • Hariati Hariati Department of Medical-Surgical Nursing, Faculty of Nursing, Institut Kesehatan Deli Husada Deli Tua, Indonesia
  • Firdaus Fahdi Department of Pharmacy, Faculty of Pharmacy, Institut Kesehatan Deli Husada Deli Tua, Indonesia
  • Peny Ariani Faculty of midwifery, Institut Kesehatan Deli Husada Deli Tua, Indonesia
  • Untung Sujianto Department of Nursing, Faculty of of Medicine, Universitas Diponegoro, Semarang, Indonesia;
  • Rostime Hermayerni Simanullang Department of Nursing, Faculty of Nursing, Universitas Murni Teguh, Medan, Indonesia;
  • Suryati Sinurat Department of Public Health, Faculty of Medicine, Universitas Methodist Indonesia, Medan, Indonesia;
  • Jadeny Sinatra Department of Anesthesiology, Faculty of Medicine, Universitas Methodist Indonesia, Medan, Indonesia;
  • Hadyanto Lim Department of Pharmacology, Faculty of Medicine, Universitas Methodist Indonesia, Medan, Sumatra Utara, Indonesia.

DOI:

https://doi.org/10.21010/Ajidv19n2S.5

Keywords:

Coffea canephora var. robusta, Glucose Homeostasis, Antiinflammatory

Abstract

Background: Type 2 diabetes mellitus (T2DM) is a chronic metabolic disorder characterized by Insulin resistance, hyperglycemia, and systemic inflammation. Coffea canephora var. robusta contains bioactive compounds with potential antihyperglycemic and anti-inflammatory effects. This study aimed to evaluate the metabolic and inflammatory effects of its ethanolic extract in a rat model of T2DM.

Materials and Methods: Forty-four male Wistar rats were randomized into 11 groups, including normal, diabetic controls, and treatment groups receiving ethanolic or ethyl acetate extracts (100–400 mg/kgBW). T2DM was induced using a high-fat diet and streptozotocin ± nicotinamide. Outcomes measured were fasting blood glucose (FBG), glucose-lowering percentage (%GL), fasting insulin resistance index (FIRI), quantitative insulin sensitivity check index (QUICKI), and TNF-α levels.

Results: The 400 mg/kgBW ethanolic extract group showed a significant reduction in FBG (p = 0.017), percentage of glucose lowering (p = 0.000), TNF-α levels (p = 0.000), and body weight (p = 0.000) compared to diabetic controls, indicating improved metabolic regulation.

Conclusion: The ethanolic extract of C. canephora improves glycemic control, enhances insulin sensitivity, and reduces inflammation in T2DM rats, supporting its potential for future clinical validation.

References

Amarachi Chike-Ekwughe, Lucy Binda John-Africa, Abiodun Humphrey Adebayo, & Olubanke Olujoke Ogunlana. (2024). Antioxidative and anti-diabetic effects of Tapinanthus cordifolius leaf extract on high-fat diet and streptozotocin-induced type 2 diabetic rats. Biomedicine & Pharmacotherapy, 176, 116774–116774. https://doi.org/10.1016/j.biopha.2024.116774

An, S., Cho, S.-H., & Yoon, J. C. (2023). Adipose Tissue and Metabolic Health. Diabetes & Metabolism Journal, 47(5), 595–611. https://doi.org/10.4093/dmj.2023.0011

Bao, L., Gong, Y., Xu, W., Dao, J., Rao, J., & Yang, H. (2025). Chlorogenic acid inhibits NLRP3 inflammasome activation through Nrf2 activation in diabetic nephropathy. PloS One, 20(1), e0316615. https://doi.org/10.1371/journal.pone.0316615

Barik, S. K., Sengupta, S., Arya, R., Kumar, S., Kim, J. J., & Chaurasia, R. (2024). Dietary Polyphenols as Potential Therapeutic Agents in Type 2 Diabetes Management: Advances and Opportunities. Advances in Nutrition, 100346. https://doi.org/10.1016/j.advnut.2024.100346

Benedé-Ubieto, R., Estévez-Vázquez, O., Ramadori, P., Cubero, F. J., & Nevzorova, Y. A. (2020). Guidelines and Considerations for Metabolic Tolerance Tests in Mice. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 13, 439–450. https://doi.org/10.2147/DMSO.S234665

Brito, A. K. da S., Mendes, A. V. da S., Timah Acha, B., Santos Oliveira, A. S. da S., Lopes Macedo, J., Suzuki Cruzio, A., Prianti, M. das G., Abreu, R. R. de, Lucarini, M., Durazzo, A., do Carmo de Carvalho e Martins, M., & Arcanjo, D. D. R. (2025). Experimental Models of Type 2 Diabetes Mellitus Induced by Combining Hyperlipidemic Diet (HFD) and Streptozotocin Administration in Rats: An Integrative Review. Biomedicines, 13(5), 1158. https://doi.org/10.3390/biomedicines13051158

Gaur, K., Mohapatra, L., Wal, P., Parveen, A., Kumar, S., & Gupta, V. (2024). Deciphering the mechanisms and effects of hyperglycemia on skeletal muscle atrophy. Metabolism Open, 24, 100332. https://doi.org/10.1016/j.metop.2024.100332

Guerra-Ávila, P. L., Guzmán, T. J., Vargas-Guerrero, B., Domínguez-Rosales, J. A., Cervantes-Garduño, A. B., Salazar-Montes, A. M., Sánchez-Orozco, L. V., & Gurrola-Díaz, C. M. (2024). Comparative Screening of the Liver Gene Expression Profiles from Type 1 and Type 2 Diabetes Rat Models. International Journal of Molecular Sciences, 25(8), 4151. https://doi.org/10.3390/ijms25084151

Gu, T., Zhang, Z., Liu, J., Chen, L., Tian, Y., Xu, W., Zeng, T., Wu, W., & Lu, L. (2023). Chlorogenic Acid Alleviates LPS-Induced Inflammation and Oxidative Stress by Modulating CD36/AMPK/PGC-1α in RAW264.7 Macrophages. International Journal of Molecular Sciences, 24(17), 13516. https://doi.org/10.3390/ijms241713516

Hahn, M. K., Giacca, A., & Pereira, S. (2024). In vivo techniques for assessment of insulin sensitivity and glucose metabolism. Journal of Endocrinology, 260(3), e230308. Retrieved Aug 7, 2025, from https://doi.org/10.1530/JOE-23-0308

Hamed, A. M., Seif-Eldein, N. A., Thabet, S. A., Osman, A. S., Rasha Abdeen Refaei, Ahmed, A. R. H., Azza M A Abouelella, El-Tantawy, W. H., Abeer Temraz, & Abu, A. (2025). Cymbopogon proximus Chiov’s extract improves insulin sensitivity in rats with dexamethasone-induced insulin resistance and underlying mechanisms. Scientific Reports, 15(1). https://doi.org/10.1038/s41598-025-02340-0

International Diabetes Federation (2025). IDF Diabetes Atlas 2025. [online] Diabetes Atlas. Available at: https://diabetesatlas.org/resources/idf-diabetes-atlas-2025/.

Ihara, Y., Shun-Ichiro Asahara, Inoue, H., Seike, M., Ando, M., Hiroki Kabutoya, Maki Kimura-Koyanagi, & Kido, Y. (2023). Chlorogenic Acid and Caffeine in Coffee Restore Insulin Signaling in Pancreatic Beta Cells. Kobe Journal of Medical Sciences, 69(1), E1. https://pmc.ncbi.nlm.nih.gov/articles/PMC10128592/

Khedr, N. F., Zahran, E. S., Ebeid, A. M., Melek, S. T., & Werida, R. H. (2024). Effect of green coffee on miR-133a, miR-155 and inflammatory biomarkers in obese individuals. Diabetology & Metabolic Syndrome, 16(1). https://doi.org/10.1186/s13098-024-01478-7

Kim, H., Kim, S. R., & Jung, U. J. (2025). Coffee and Its Major Polyphenols in the Prevention and Management of Type 2 Diabetes: A Comprehensive Review. International Journal of Molecular Sciences, 26(12), 5544–5544. https://doi.org/10.3390/ijms26125544

Kolb, H., Martin, S., & Kempf, K. (2021). Coffee and Lower Risk of Type 2 Diabetes: Arguments for a Causal Relationship. Nutrients, 13(4), 1144. https://doi.org/10.3390/nu13041144

Laker, R. C., Egolf, S., Will, S., Lantier, L., McGuinness, O. P., Brown, C., Bhagroo, N., Oldham, S., Kuszpit, K., Alfaro, A., Li, X., Kang, T., Pellegrini, G., Andréasson, A.-C., Kajani, S., Sitaula, S., Larsen, M. R., & Rhodes, C. J. (2025). GLP-1R/GCGR dual agonism dissipates hepatic steatosis to restore insulin sensitivity and rescue pancreatic β-cell function in obese male mice. Nature Communications, 16(1). https://doi.org/10.1038/s41467-025-59773-4

Li, M., Ding, L., Cao, L., Zhang, Z., Li, X., Li, Z., Xia, Q., Yin, K., Song, S., Wang, Z., Du, H., Zhao, D., Li, X., & Wang, Z. (2025). Natural products targeting AMPK signaling pathway therapy, diabetes mellitus and its complications. Frontiers in Pharmacology, 16. https://doi.org/10.3389/fphar.2025.1534634

Luo, C., Liang, J., Sharabi, K., Hatting, M., Perry, E. A., Tavares, C. D. J., Goyal, L., Srivastava, A., Bilodeau, M., Zhu, A. X., Sicinski, P., & Puigserver, P. (2020). Obesity/Type 2 Diabetes-Associated Liver Tumors Are Sensitive to Cyclin D1 Deficiency. Cancer Research, 80(16), 3215–3221. https://doi.org/10.1158/0008-5472.can-20-0106

Mohamed, A. I., Erukainure, O. L., Salau, V. F., & Islam, M. S. (2024). Impact of coffee and its bioactive compounds on the risks of type 2 diabetes and its complications: A comprehensive review. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 18(7), 103075. https://doi.org/10.1016/j.dsx.2024.103075

Nguyen, V., Taine, E. G., Meng, D., Cui, T., & Tan, W. (2024). Chlorogenic Acid: A Systematic Review on the Biological Functions, Mechanistic Actions, and Therapeutic Potentials. Nutrients, 16(7), 924–924. https://doi.org/10.3390/nu16070924

Ong, K. W., Hsu, A., & Tan, B. K. H. (2012). Chlorogenic Acid Stimulates Glucose Transport in Skeletal Muscle via AMPK Activation: A Contributor to the Beneficial Effects of Coffee on Diabetes. PLoS ONE, 7(3), e32718. https://doi.org/10.1371/journal.pone.0032718

Ouyang, H., Xie, Y., Du, A., Dong, S., Zhou, S., Lu, B., Wang, Z., & Ji, L. (2024). Chlorogenic acid ameliorates non-proliferative diabetic retinopathy via alleviating retinal inflammation through targeting TNFR1 in retinal endothelial cells. International Immunopharmacology, 141, 112929. https://doi.org/10.1016/j.intimp.2024.112929

Reis, C. E. G., Dórea, J. G., & da Costa, T. H. M. (2019). Effects of coffee consumption on glucose metabolism: A systematic review of Clinical Trials. Journal of Traditional and Complementary Medicine, 9(3), 184–191. https://doi.org/10.1016/j.jtcme.2018.01.001

Ren, Y., Wang, C., Xu, J., & Wang, S. (2019). Cafestol and Kahweol: A Review on Their Bioactivities and Pharmacological Properties. International Journal of Molecular Sciences, 20(17). https://doi.org/10.3390/ijms20174238

Siahaan, J. M., Illyas, S., Lindarto, D. & Nainggolan, M. (2019). The Effect Of Ethanol Extract And Ethyl Acetic Fraction Of Standardised Chayote Squash To Reduce Blood Sugar Level And The Function Of Pancreatic ß-Cell Of Male Albino Rats Induced By STZ-NA-HFD. Rasayan Journal of Chemistry, 14(01), 65–73. https://doi.org/10.31788/rjc.2021.1415973

Siahaan, J. M., Illyas, S., Lindarto, D. & Nainggolan, M. (2020). The Effect of Ethanol and Ethyl Acetate Fraction of Chayote fruit (Sechium edule Jacq. Swartz) on the Oxidative Stress and Insulin Resistance of Male White Rat Model Type 2 Diabetes Mellitus. Open Access Macedonian Journal of Medical Sciences, 8(A), 962–969. https://doi.org/10.3889/oamjms.2020.4517

Siahaan, J.M., Julianto, E., and Silitonga, H. A. (2019). The Effects of Ethanol Extract and Ethyl Acetate Fractionation of Sechium Edule Jacq. Swartz on Triglyceride Levels in Male Rats with Type 2 Diabetes Mellitus. Indonesian Journal of Medicine, [online] 4(4), pp.371–375. https://doi.org/10.26911/theijmed.2019.4.4.233

Sinaga, Y. A., Lim, H., & Siahaan, J. M. (2025). Coffea canephora var. Robusta Modulates Testosterone and CRISP-1 Levels in STZ-Induced Diabetic Rats. Research Journal of Pharmacy and Technology, 739–743. https://doi.org/10.52711/0974-360x.2025.00109

Tamimi, O. A., Awwad, S. H., Issa, R., Talal Al-Qaisi, Husam Abazid, Daraosheh, A., Mohammad, B., Tsvetanka Filipova, & Mahmoud Abu-Samak. (2024). The effect of roasting degrees on bioactive compounds levels in Coffea arabica and their associations with glycated hemoglobin levels and kidney function in diabetic rats. Journal of Applied Pharmaceutical Science. https://doi.org/10.7324/japs.2024.181047

Vasileva, L. V., Savova, M. S., Amirova, K. M., Zhivka Balcheva-Sivenova, Ferrante, C., Orlando, G., Wabitsch, M., & Georgiev, M. I. (2020). Caffeic and Chlorogenic Acids Synergistically Activate Browning Program in Human Adipocytes: Implications of AMPK- and PPAR-Mediated Pathways. International Journal of Molecular Sciences, 21(24), 9740–9740. https://doi.org/10.3390/ijms21249740.

Downloads

Published

2025-10-17

How to Cite

Siahaan, J. M., Anto, E. J., Fauzi, T. M., Pasaribu, S. M., Ginting, H. I. S., Sitorus, F. E., Hariati, H., Fahdi, F., Ariani, P., Sujianto, U., Simanullang, R. H., Sinurat, S., Sinatra, J., & Lim, H. (2025). ANTI-INFLAMMATORY AND METABOLIC EFFECTS OF COFFEA CANEPHORA EXTRACT IN DIABETIC RATS: INSIGHTS FROM TNF-Α REDUCTION AND INSULIN SENSITIVITY INDICES. African Journal of Infectious Diseases (AJID), 19(2S), 37–44. https://doi.org/10.21010/Ajidv19n2S.5