BIOFILM: FORMATION AND NATURAL PRODUCTS’ APPROACH TO CONTROL – A REVIEW.
DOI:
https://doi.org/10.21010/Ajid%20v16i2S.7Abstract
Biofilm formation, especially on indwelling medical devices such as catheters, can result in infections and substantially affect patients' quality of life. Biofilm-associated infections have led to increased morbidity and mortality, increased cost of treatment, and length of hospital stay. However, all of the identified consequences of the biofilm-associated infections had been attributed to the reduced susceptibility of biofilm to conventional antimicrobial agents which has necessitated the development of a new strategy for biofilm infections control, thereby making a search for more effective antimicrobial agents from plant source inevitable. So far, some antimicrobial agents (crude or isolated compounds) from plant sources affect a specific stage of biofilm development while a few of them have been developed into a suitable dosage form for biofilm control. In this review, an attempt is made to look into some definitions of biofilm by "biofilmologists", stages in biofilm formation, mechanisms of resistance in biofilm, biofilm control strategies, the use of some natural products in biofilm control and concepts of probiotics as agents of biofilm control.
References
Aires, C. P., Batista, M. J. A.and Pitondo-Silva, A.(2017). Decrease of ceftriaxone susceptibility in Klebsiella pneumoniae according to biofilm maturation. Journal of Global Antimicrobial Resistance, 9:126-127.
Alnaqdy, A., Al-Jabri, A., Al Mahrooqi, Z., Nzeako, B. and Nsanze, H. (2005). Inhibition effect of honey on the adherence of Salmonella to intestinal epithelial cells in vitro. International Journal of Food Microbiology, 103: 347-51.
An, Y. H., Dickinson, R. B. and Doyle, R. J. (2000). Mechanisms of bacterial adhesion and pathogenesis of implant and tissue infections In: An, Y. H., Friedman, R. J. (ed.), Handbook of bacterial adhesion: principles, methods, and applications. Humana Press, Totowa, NJ, 1-27.
Anderl, J. N., Franklin, M. J. and Stewart, P. S. (2000). Role of antibiotic penetration limitation in Klebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacin. Antimicrobial Agents and Chemotherapy, 44: 1818–24.
Ankri, S. and Mirel, D. (1999). Antimicrobial properties of allicin from garlic. Microbes and Infection, 1: 125-9.
Anwar, H., Van Biesen, T., Dasgupta, M., Lam, K. and Costerton, J. W. (1989). Interaction of biofilm bacteria with antibiotics in a novel in vitro chemostat system. Antimicrobial Agents and Chemotherapy, 33: 1824-1826.
Bagge, N., Ciofu, O., Skovgaard, L. T. and Hoiby, N. (2000). Rapid development in vitro and in vivo of resistance to ceftazidime in biofilm-growing Pseudomonas aeruginosa due to chromosomal beta-lactamase. Acta Pathologica, Microbiologica, et Immunologica Scandinavica, 108:589 – 600.
Banerjee, D., Shivapriya, P. M., Gautam, P. K., Misra, K., Sahoo, A. K.and Samanta, S. K. (2019). A Review on Basic Biology of Bacterial Biofilm Infections and Their Treatments by Nanotechnology-Based Approaches. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 1-17. https://doi.org/10.1007/s40011-018-01065-7.
Bassler, B.L. and Losick, R. (2006). Bacterially speaking. Cell, 125: 237– 246.
Bodet, C., Piche, M., Chandad, F. and Grenier, D. (2006). Inhibition of periodontopathogen-derived proteolytic enzymes by a high-molecular-weight fraction isolated from cranberry. Journal of Antimicrobial Chemotherapy, 57:685–690.
Boles, B. R., Thoendel, M. and Singh, P. K. (2005). Rhamnolipids mediate detachment of Pseudomonas aeruginosa from biofilms. Molecular Microbiology, 57:1210-1223.
Bozin, B., Mimica-Dukic, N., Samojlik, I. and Jovin, E. (2007). Antimicrobial and antioxidant properties of rosemary and sage (Rosmarinus officinalis L. and Salvia officinalis L., Lamiaceae) essential oils. Journal of Agricultural and Food Chemistry, 19: 7879–7885.
Branda, S. S., Vik, S., Friedman, L. and Kolter, R. (2005). Biofilms: the matrix revisited. Trends in Microbiology, 13: 20-6.
Brooun, A., Liu, S. and Lewis, K. (2000). A dose-response study of antibiotic resistance in Pseudomonas aeruginosa biofilms. Antimicrobial Agents and Chemotherapy, 44: 640-646.
Burt, S. A., Ojo-Fakunle, V. T. A., Woertman, J. and Veldhuizen, E. J. A. (2014). The natural antimicrobial carvacrol inhibits quorum sensing in Chromobacterium violaceum and reduces bacterial biofilm formation at sub-lethal concentrations. PLoS One, 9: e93414.
Carpentier, B. and Cerf, O. (1993). Biofilms and their consequences, with particular reference to hygiene in the food industry. Journal of. Applied Bacteriology, 75:499–511.
Chen, M., Zhang, Z. and Bott, T. (1998). Direct measurement of the adhesive strength of biofilms in pipes by micromanipulation. Biotechnology Techniques,12:875-80.
Cheng, G., Zhang, Z., Chen, S., Bryers, J. D. and Jiang, S. (2007). Inhibition of bacterial adhesion and biofilm formation on zwitterionic surfaces. Biomaterials, 28:4192-9.
Cochran, W. L., McFeters, G. A. and Stewart, P. S. (2000). Reduced susceptibility of thin Pseudomonas aeruginosa biofilms to hydrogen peroxide and monochloramine. Journal of Applied Microbiology, 88: 22–30.
Coetzee, G., Marx, I. J., Pengilly, M., Bushula, V. S., Joubert, E. and Bloom, M. (2008). Effect of rooibos and honeybush tea extracts against Botrytis cinerea. South African Journal of Enology and Viticulture, 29: 33–38.
Costerton, J. W., Cheng, K. J., Geesey, G. G., Ladd, T. I., Nickel, J. C., Dasgupta, M., and Marrie, T. J. (1987). Bacterial biofilms in nature and disease. Annual review of microbiology, 41: 435–464.
Damte, D., Gebru, E., Lee, S., Suh, J. and Park, S. (2013). Evaluation of anti-quorum sensing activity of 97 indigenous plant extracts from Korea through bioreporter bacterial strains Chromobacterium violaceum and Pseudomonas aeruginosa. Journal of Microbial and Biochemical Technology, 5:042-046.
Das, J. R., Bhakoo, M., Jones, M. V. and Gilbert, P. (1998). Changes in the biocide susceptibility of taphylococcus epidermidis and Escherichia coli cells
associated with rapid attachment to plastic surfaces. Journal of Applied Microbiology, 84: 852–58.
Davey, M. E. and O'toole, G. A. (2000). Microbial biofilms: from ecology to molecular genetics. Microbiology and Molecular Biology Reviews : MMBR, 64(4): 847–867.
Davies, D. G., Parsek, M. R., Pearson, J. P., Iglewski, B. H., Costerton, J. W. and Greenberg, E. P. (1998). The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science, 280:295–298.
de Beer, D., Stoodley, P., Roe, F. and Lewandowski, Z. (1994). Effects of biofilm structures on oxygen distribution and mass transport. Biotechnology and Bioengineering, 43(11): 1131–1138.
De Weger, L. A., van der Vlugt, C. I., Wijfjes, A. H., Bakker, P. A., Schippers, B. and Lugtenberg, B. (1987). Flagella of a plant-growth-stimulating Pseudomonas fluorescens strain are required for colonization of potato roots. Journal of Bacteriology, 169(6): 2769–2773.
Ding, X., Yin, B., Qian, L., Zeng, Z., Yang, Z., Li, H., Lu, Y., and Zhou, S. (2011). Screening for novel quorum-sensing inhibitors to interfere with the formation of Pseudomonas aeruginosa biofilm. Journal of Medical Microbiology, 60(Pt 12): 1827–1834.
Donlan, R. M. and Costerton, J. W. (2002). Biofilms: survival mechanisms of clinically relevant microorganisms. Clinical Microbiology Reviews, 15(2): 167–193.
Donlan, R. M. (2002). Biofilms: Microbial life on surfaces. Emerging Infectious Diseases, 8(9): 881-890.
Dunne W. M., Jr (2002). Bacterial adhesion: seen any good biofilms lately?. Clinical Microbiology Reviews, 15(2):155–166.
FAO/WHO.(2002). Joint FAO/WHO Working Group Report on Drafting Guidelines for the Evaluation of Probiotics in Food, Ontario, Canada.
FAO/WHO.(2001). Report on Joint FAO/WHO Expert Consultation on Evaluation of Health and Nutritional Properties of Probiotics in Food Including Powder Milk with Live Lactic Acid Bacteria.
Fernandes, M. S. M. (2019). Atividade antimicrobiana e antibiofilme do sobrenadante de cepas de Lactobacillus cell-free sobre isolados de Escherichia coli farmacorresistentes. MS Thesis. Federal University of Ceará, CE, Brazil. http://www.repositorio.ufc.br/handle/riufc/40355.
Fong, J. and Yildiz, F. H. (2015). Biofilm Matrix Proteins. Microbiology Spectrum, 3(2): 10.1128/microbiolspec.MB-0004-2014.
Foo, L. Y., Lu, Y., Howell, A. B. and Vorsa, N. (2000). A-Type proanthocyanidin trimers from cranberry that inhibit adherence of uropathogenic P-fimbriated Escherichia coli. Journal of Natural Products, 63(9): 1225–1228.
Francolini, I. and Donelli, G. (2010). Prevention and control of biofilm-based medical-device-related infections. FEMS Immunology and Medical Microbiology, 59(3): 227–238.
Fuller, R.(1999). Probiotics for farm animals In: Probiotics a Critical Review, Horizon Scientific, Wymondham, UK, 15-22.
Fuller, R.(1989). Probiotics in man and animals. Journal of Applied Microbiology, 66:365–378.
Ganesh, C. K. and Anand, S. K. (1998). Significance of microbial biofilms in food industry a review. International Journal of Food Microbiology, 42:9–27.
Garrett, T. R., Bhakoo, M. and Zhang, Z. (2008). Bacterial adhesion and biofilms on surfaces. Progress in Natural Science, 18:1049-1056.
Giaouris, E., Chapot-Chartier, M. and Briandet, R. (2009). Surface physico-chemical analysis of natural Lactococcus lactis strains reveals the existence of hydrophobic and low charged strains with altered adhesive properties. International Journal of Food Microbiology, 131:2–9.
Givskov, M., de Nys, R., Manefield, M., Gram, L., Maximilien, R., Eberl, L., Molin, S., Steinberg, P. D. and Kjelleberg, S. (1996). Eukaryotic interference with homoserine lactone-mediated prokaryotic signalling. Journal of Bacteriology, 178(22): 6618–6622.
Goldberg, J. (2002). Biofilms and antibiotic resistance: a genetic linkage. Trends in Microbiology, 10:264.
Golek, P., Bednarski, W., Brzozowski, B. and Dziuba, B. (2009). The obtaining and properties of biosurfactants synthesized by bacteria of the genus Lactobacillus. Annals of Microbiology, 59:119–126.
Hager, C. L., Isham, N., Schrom, K. P., Chandra, J., McCormick, T., Miyagi, M. and Ghannoum, M. A. (2019). Effects of a Novel Probiotic Combination on Pathogenic Bacterial-Fungal Polymicrobial Biofilms. mBio,10:e00338-19.
Harkins, K. J. (2000). What’s the use of cranberry juice? Age and Ageing, 29: 9- 12.
Holzapfel, W. H., Haberer, P., Geisen, R., Björkroth, J. and Schillinger, U. (2001). Taxonomy and important features of probiotic microorganisms in food and nutrition. The American Journal of Clinical Nutrition, 73(2 Suppl): 365S–373S.
Howell, A. B., Reed, J. D., Krueger, C. G., Winterbottom, R., Cunningham, D. G. and Leahy, M. (2005). A-type cranberry proanthocyanidins and uropathogenic bacterial anti-adhesion activity. Phytochemistry, 66(18): 2281–2291.
Jakobsen, T. H., Bragason, S. K., Phipps, R. K., Christensen, L. D., van Gennip, M., Alhede, M., Skindersoe, M., Larsen, T. O., Høiby, N., Bjarnsholt, T. and Givskov, M. (2012). Food as a source for quorum sensing inhibitors: iberin from horseradish revealed as a quorum sensing inhibitor of Pseudomonas aeruginosa. Applied and Environmental Microbiology, 78(7): 2410–2421.
Jeong, D., Kim, D. H., Song, K. Y. and Seo, K. H. (2018). Antimicrobial and anti-biofilm activities of Lactobacillus kefiranofaciens DD2 against oral pathogens. Journal of Oral Microbiology, 10(1): 1472985.
Kaplan J. B. (2010). Biofilm dispersal: mechanisms, clinical implications, and potential therapeutic uses. Journal of Dental Research, 89(3): 205–218.
Karatan, E. and Watnick, P. (2009). Signals, regulatory networks, and materials that build and break bacterial biofilms. Microbiology and Molecular Biology Reviews : MMBR, 73(2): 310–347.
Kechagia, M., Basoulis, D., Konstantopoulou, S., Dimitriadi, D., Gyftopoulou, K., Skarmoutsou, N. and Fakiri, E. M. (2013). Health benefits of probiotics: a review. ISRN nutrition, 2013: 481651.
Keshavan, N. D., Chowdhary, P. K., Haines, D. C.and González, J. E. (2005). L-Canavanine made by Medicago sativa interferes with quorum sensing in Sinorhizobium meliloti. Journal of Bacteriology, 187(24): 8427–8436.
Kumon, H., Tomochika, K., Matunaga, T., Ogawa, M. and Ohmori, H. (1994). A sandwich cup method for the penetration assay of antimicrobial agents through Pseudomonas exopolysaccharides. Microbiology and Immunology, 38(8): 615–619.
Lawrence, J. R., Scharf, B., Packroff, G. and Neu, T. R. (2002). Microscale evaluation of the effects of grazing by invertebrates with contrasting feeding modes on river biofilm architecture and composition. Microbial Ecology, 44(3): 199–207.
Lewandowski, Z. (2000). Structure and function of biofilms In: Evans LV, (ed.), Biofilms: recent advances in their study and control. Harwood Academic Publishers, Amsterdam, The Netherlands, 1-17.
Liévin-Le Moal, V., and Servin, A. L. (2014). Anti-infective activities of lactobacillus strains in the human intestinal microbiota: from probiotics to gastrointestinal anti-infectious biotherapeutic agents. Clinical Microbiology Reviews, 27(2): 167–199.
Limoli, D. H., Jones, C. J. and Wozniak, D. J. (2015). Bacterial Extracellular Polysaccharides in Biofilm Formation and Function. Microbiology Spectrum, 3(3): 10.1128/microbiolspec.MB-0011-2014.
Ma, L., Conover, M., Lu, H., Parsek, M. R., Bayles, K. and Wozniak, D. J. (2009). Assembly and development of the Pseudomonas aeruginosa biofilm matrix. PLoS pathogens, 5(3): e1000354.
Ma, R., Di, LQ. and Xu, HQ. (2008). Optimization of extraction technology of free anthraquinones from Rheum. Chinese Traditional Herb Drugs, 39: 858–860.
Maira-Litran, T., Allison, D. G. and Gilbert, P. (2000). Expression of the multiple antibiotic resistance operons (mar) during growth of Escherichia coli as a biofilm. Journal of Applied Microbiology, 88: 243-247.
Majtan, J., Bohova, J., Horniackova, M., Klaudiny, J. and Majtan, K. (2013). Anti-biofilm effects of honey against wound pathogens Proteus mirabilis and Enterobacter cloacae. Phytotherapy Research, 28: 69–75.
Mercenier, A., Lenoir-Wijnkoop, I. and Sanders, M. E. (2008). Physiological and functional properties of probiotics. Journal of Dairy Science and Biotechnology, 429:2–6.
Mercenier, A., Pavan, S. and Pot, B. (2003). Probiotics as biotherapeutic agents: present knowledge and future prospects. Current pharmaceutical design, 9(2): 175–191..
Niu, C., Afre, S. and Gilbert, E. S. (2006). Subinhibitory concentrations of cinnamaldehyde interfere with quorum sensing. Letters in applied microbiology, 43(5): 489–494.
Norizan, S. N., Yin, W. F. and Chan, K. G. (2013). Caffeine as a potential quorum sensing inhibitor. Sensors (Basel, Switzerland), 13(4): 5117–5129.
O'Toole, G. A. and Kolter, R. (1998). Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis. Molecular Microbiology, 28(3): 449–461.
Osama, D. M., Elkhatib, W. F., Tawfeik, A. M. and Mohammad, M. (2017). Antimicrobial, antibiofilm and immunomodulatory activities of Lactobacillus rhamnosus and Lactobacillus gasseri against some bacterial pathogens. International Journal of Biotechnology for Wellness Industries, 6:12-21.
Packiavathy, I. A., Sasikumar, P., Pandian, S. K. and Veera Ravi, A. (2013). Prevention of quorum-sensing-mediated biofilm development and virulence factors production in Vibrio spp. by curcumin. Applied microbiology and biotechnology, 97(23): 10177–10187.
Pang, C. M., Hong, P., Guo, H. and Liu, W. T. (2005). Biofilm formation characteristics of bacterial isolates retrieved from a reverse osmosis membrane. Environmental Science & Technology, 39(19): 7541–7550.
Peng, J. S., Tsai, W. C. and Chou, C. C. (2002). Inactivation and removal of Bacillus cereus by sanitizer and detergent. International Journal of Food Microbiology, 77(1-2): 11–18.
Petrova, O. E. and Sauer, K. (2016). Escaping the biofilm in more than one way: desorption, detachment or dispersion. Current Opinion in Microbiology, 30: 67–78.
Prosser, B. L., Taylor, D., Dix, B. A. and Cleeland, R. (1987). Method of evaluating effects of antibiotics on bacterial biofilm. Antimicrobial Agents and Chemotherapy, 31(10): 1502–1506.
Rasmussen, T. B. and Givskov, M. (2006). Quorum sensing inhibitors: a bargain of effects. Microbiology (Reading, England), 152(Pt 4): 895–904.
Rodrigues, L., Duarte, A., Figueiredo, A. C., Brito, L., Teixeira, G., Moldão, M. and Monteiro, A. (2011). Chemical composition and antibacterial activity of the essential oils from the medicinal plant Mentha cervina L. grown in Portugal. Medicinal Chemistry Research, 21(11): 3485–3490.
Rutherford, S. T. and Bassler, B. L. (2012). Bacterial quorum sensing: its role in virulence and possibilities for its control. Cold Spring Harbor perspectives in medicine, 2(11): a012427.
Saarela, M., Mogensen, G., Fondén, R., Mättö, J. and Mattila-Sandholm, T. (2000). Probiotic bacteria: safety, functional and technological properties. Journal of Biotechnology, 84(3): 197–215.
Sánchez, E., Rivas Morales, C., Castillo, S., Leos-Rivas, C., García-Becerra, L. and Ortiz Martínez, D. M. (2016). Antibacterial and Antibiofilm Activity of Methanolic Plant Extracts against Nosocomial Microorganisms. Evidence-based complementary and alternative medicine : eCAM, 2016, 1572697.
Sandasi, M., Leonard, C. M., Van Vuuren, S. F. and Viljoen, A. M. (2011). Peppermint (Mentha piperita) inhibits microbial biofilms in vitro. South African Journal of Botany, 77: 80–85.
Sandasi, M., Leonard, C. M. and Viljoen, A. M. (2010). The in vitro antibiofilm activity of selected culinary herbs and medicinal plants against Listeria monocytogenes. Letters in Applied Microbiology, 50(1): 30–35.
Sanders, M. E. (2008). Probiotics: definition, sources, selection, and uses. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America, 46 Suppl 2: S58–S151.
Sarabhai, S., Sharma, P. and Capalash, N. (2013). Ellagic acid derivatives from Terminalia chebula Retz. downregulate the expression of quorum sensing genes to attenuate Pseudomonas aeruginosa PAO1 virulence. PLoS One, 8(1): e53441.
Satpute, S. K., Kulkarni, G. R., Banpurkar, A. G., Banat, I. M., Mone, N. S., Patil, R. H. and Cameotra, S. S. (2016). Biosurfactant/s from Lactobacilli species: Properties, challenges and potential biomedical applications. Journal of Basic Microbiology, 56(11): 1140–1158.
Sedlacek, M. J. and Walker, C. (2007). Antibiotic resistance in an in vitro subgingival biofilm model. Oral Microbiology and Immunology, 22(5): 333–339.
Servin, A. L. (2004). Antagonistic activities of lactobacilli and bifidobacteria against microbial pathogens. FEMS Microbiology Reviews, 28(4): 405–440.
Shaaban, M., Abd El-Rahman, O. A., Al-Qaidi, B. and Ashour, H. M. (2020). Antimicrobial and Antibiofilm Activities of Probiotic Lactobacilli on Antibiotic-Resistant Proteus mirabilis. Microorganisms, 8(6): 960.
Sharma, D. and Singh Saharan, B. (2014). Simultaneous Production of Biosurfactants and Bacteriocins by Probiotic Lactobacillus casei MRTL3. International Journal of Microbiology, 2014: 698713.
Shigeta, M., Tanaka, G., Komatsuzawa, H., Sugai, M., Suginaka, H. and Usui, T. (1997). Permeation of antimicrobial agents through Pseudomonas aeruginosa biofilms: a simple method. Chemotherapy, 43(5): 340–345.
Sidhu, M. S., Langsrud, S. and Holck, A. (2001). Disinfectant and antibiotic resistance of lactic acid bacteria isolated from the food industry. Microbial Drug Resistance (Larchmont, N.Y.), 7(1): 73–83.
Simões, M., Simões, L. C. and Vieira, M. J. (2010). A review of current and emergent biofilm control strategies. LWT - Food Science and Technology, 43(4): 573–583..
Singh, V. P., Sharma, J., Babu, S., Rizwanulla, and Singla, A. (2013). Role of probiotics in health and disease: a review. JPMA. The Journal of the Pakistan Medical Association, 63(2): 253–257.
Singla, S., Harjai, K. and Chhibber, S. (2013). Susceptibility of different phases of biofilm of Klebsiella pneumoniae to three different antibiotics. The Journal of antibiotics, 66(2): 61–66.
Sobota, A. E. (1984). Inhibition of bacterial adherence by cranberry juice: potential use for the treatment of urinary tract infections. The Journal of urology, 131(5): 1013–1016.
Solano, C., García, B., Valle, J., Berasain, C., Ghigo, J. M., Gamazo, C. and Lasa, I. (2002). Genetic analysis of Salmonella enteritidis biofilm formation: critical role of cellulose. Molecular Microbiology, 43(3): 793–808.
Spinler, J. K., Taweechotipatr, M., Rognerud, C. L., Ou, C. N., Tumwasorn, S. and Versalovic, J. (2008). Human-derived probiotic Lactobacillus reuteri demonstrate antimicrobial activities targeting diverse enteric bacterial pathogens. Anaerobe, 14(3): 166–171.
Stewart, P. S. and Costerton, J. W. (2001). Antibiotic resistance of bacteria in biofilms. Lancet, 358: 135 – 138.
Stewart, P. S. (2002). Mechanisms of antibiotic resistance in bacterial biofilms. International Journal of Medical Microbiology, 292(2): 107–113.
Stoodley, P., Wilson, S., Hall-Stoodley, L., Boyle, J. D., Lappin-Scott, H. M. and Costerton, J. W. (2001). Growth and detachment of cell clusters from mature mixed-species biofilms. Applied and Environmental Microbiology, 67(12): 5608–5613.
Suci, P. A., Mittelman, M. W., Yu, F. P. and Geesey, G. G. (1994). Investigation of ciprofloxacin penetration into Pseudomonas aeruginosa biofilms. Antimicrobial Agents and Chemotherapy, 38(9): 2125–2133.
Tack, K. J. and Sabath, L. D. (1985). Increased minimum inhibitory concentrations with anaerobiasis for tobramycin, gentamicin, and amikacin, compared to latamoxef, piperacillin, chloramphenicol, and clindamycin. Chemotherapy, 31(3): 204–210.
Ben Taheur, F., Kouidhi, B., Fdhila, K., Elabed, H., Ben Slama, R., Mahdouani, K., Bakhrouf, A. and Chaieb, K. (2016). Anti-bacterial and anti-biofilm activity of probiotic bacteria against oral pathogens. Microbial Pathogenesis, 97: 213–220.
Teanpaisan, R., Kawsud, P., Pahumunto, N. and Puripattanavong, J. (2017). Screening for antibacterial and antibiofilm activity in Thai medicinal plant extracts against oral microorganisms. Journal of Traditional and Complementary Medicine, 7(2): 172–177..
Toma, M. M. and Pokrotnieks, J. (2006). Probiotics as functional food: microbiological and medical aspects. Acta Universitatis, 710:117–129.
Tuomanen, E., Cozens, R., Tosch, W., Zak, O. and Tomasz, A. (1986). The rate of killing of Escherichia coli by beta-lactam antibiotics is strictly proportional to the rate of bacterial growth. Journal of General Microbiology, 132(5): 1297–1304.
Ulrey, R. K., Barksdale, S. M., Zhou, W. and van Hoek, M. L. (2014). Cranberry proanthocyanidins have anti-biofilm properties against Pseudomonas aeruginosa. BMC Complementary and Alternative Medicine, 14: 499.
van Wyk, B. E. and Wink, M. (2004). Medicinal Plants of the World, 1st edn. South Africa: Briza publications.
Vattem, D. A., Ghaedian, R. and Shetty, K. (2005). Enhancing health benefits of berries through phenolic antioxidant enrichment: focus on cranberry. Asia Pacific Journal of Clinical Nutrition, 14(2): 120–130.
Vattem, D. A., Mihalik, K., Crixell, S. H. and McLean, R. J. (2007). Dietary phytochemicals as quorum sensing inhibitors. Fitoterapia, 78(4): 302–310.
Vikram, A., Jayaprakasha, G. K., Jesudhasan, P. R., Pillai, S. D. and Patil, B. S. (2010). Suppression of bacterial cell-cell signalling, biofilm formation and type III secretion system by citrus flavonoids. Journal of Applied Microbiology, 109(2): 515–527.
Vikram, A., Jesudhasan, P. R., Jayaprakasha, G. K., Pillai, S. D. and Patil, B. S. (2011). Citrus limonoids interfere with Vibrio harveyi cell-cell signalling and biofilm formation by modulating the response regulator LuxO. Microbiology (Reading, England), 157(Pt 1): 99–110.
Walters, M. and Sperandio, V. (2006). Autoinducer 3 and epinephrine signaling in the kinetics of locus of enterocyte effacement gene expression in enterohemorrhagic Escherichia coli. Infection and Immunity, 74(10): 5445–5455.
Wasfi, R., Abd El-Rahman, O. A., Zafer, M. M. and Ashour, H. M. (2018). Probiotic Lactobacillus sp. inhibit growth, biofilm formation and gene expression of caries-inducing Streptococcus mutans. Journal of Cellular and Molecular Medicine, 22(3): 1972–1983.
Whitchurch, C. B., Tolker-Nielsen, T., Ragas, P. C. and Mattick, J. S. (2002). Extracellular DNA required for bacterial biofilm formation. Science (New York, N.Y.), 295(5559): 1487.
Williams, I., Venables, W. A., Lloyd, D., Paul, F. and Critchley, I. (1997). The effects of adherence to silicone surfaces on antibiotic susceptibility in Staphylococcus aureus. Microbiology (Reading, England), 143 (Pt 7): 2407–2413.
Wilson, S., Hamilton, M. A., Hamilton, G. C., Schumann, M. R. and Stoodley, P. (2004). Statistical quantification of detachment rates and size distributions of cell clumps from wild-type (PAO1) and cell signaling mutant (JP1) Pseudomonas aeruginosa biofilms. Applied and Environmental Microbiology, 70(10): 5847–5852.
Wimpenny, J., Manz, W. and Szewzyk, U. (2000). Heterogeneity in biofilms. FEMS Microbiology Reviews, 24(5): 661–671.
Ymele-Leki, P. And Ross, J. M. (2007). Erosion from Staphylococcus aureus biofilms grown under physiologically relevant fluid shear forces yields bacterial cells with reduced avidity to collagen. Applied and Environmental Microbiology, 73(6): 1834–1841.
Zhang, T. C. and Bishop, P. L. (1996). Evaluation of Substrate and pH Effects in a Nitrifying Biofilm. Water Environment Research, 68(7): 1107–1115.
Zogaj, X., Nimtz, M., Rohde, M., Bokranz, W. and Römling, U. (2001). The multicellular morphotypes of Salmonella typhimurium and Escherichia coli produce cellulose as the second component of the extracellular matrix. Molecular Microbiology, 39(6): 1452–1463.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 African Journal of Infectious Diseases (AJID)
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright: Creative Commons Attribution CC BY This license lets others distribute, remix, tweak, and build upon your work, even commercially, as long as they credit you for the original creation. This is the most accommodating of licenses offered. Recommended for maximum dissemination and use of licensed materials. View License Deed | View Legal Code Authors can also self-archive their manuscripts immediately and enable public access from their institution's repository. This is the version that has been accepted for publication and which typically includes author-incorporated changes suggested during submission, peer review and in editor-author communications.