ANTIPLASMODIAL ACTIVITIES OF THE STEM BARK EXTRACT OF ARTOCARPUS ALTILIS FORSBERG

Authors

  • Adetunji Joseph ALADESANMI Afe Babalola University, Ado Ekiti, Ekiti State Nigeria.
  • Ogu Emmanuel ODIBA Obafemi Awolowo University, Ile-Ife
  • Samuel Akintunde ODEDIRAN Obafemi Awolowo University, Ile-Ife https://orcid.org/0000-0002-8377-7899
  • Ayodeji Oluwabunmi ORIOLA Obafemi Awolowo University

DOI:

https://doi.org/10.21010/Ajid%20v16i2S.5

Abstract

Background: The potential of Artocarpus altilis stem bark as a safe antimalarial agent, and the identification of its antimalarial constituents was explored.

 Materials and Methods:The air-dried stem bark was extracted with 70% ethanol, filtered and concentrated in vacuo to obtain the extract (EE). The extract was successively partitioned to give n-hexane (AAH),dichloromethane (AAD), ethyl acetate (AAE)n-butanol (AAB)and aqueous (AAQ)fractions respectively after determining the acute toxicity using Lorke’s method. These were each evaluated for chemosuppressive antimalarial activities (0-200mg/kg) against chloroquine-sensitive Plasmodium berghei-berghei-infected albino mice. Normal saline and chloroquine, 10 mg/kg were negative and positive control respectively.The survival times and percentage survivors of the mice in both experiments were determined after observation for twenty-eight days post-drug administration. The five (5) column chromatographic (CC) fractions, AAH1, AAH2, AAH3, AAH4andAAH5 obtained from the most active AAH, were also evaluated for antimalarial activities (0-50mg/kg). Further column purification and repeated PTLC of AAH5 yielded three bands, which were finally subjected to GC-MS analysis.

Results:EE gave ED50 and LD50 values of 227.17and >5000 mg/kg while its partitioned fractions gave ED50 values as follows: AAH, 79.14; AAD, 215.59;AAE, 160.46,AAB,81.42; and AAQ, 90.85 mg/kg respectively. The primary CC fractions also gave ED50 values as follows:AAH1 21.95;AAH2, 26.96;AAH3,21.30; AAH4, 20.92 andAAH5, 20.75 mg/kg respectively to identify AAH5 as the putative fraction. GC-MS analysis revealed eleven major compounds (1–11) in the three PTLC bands as the antiplasmodial constituents of the plant.

Conclusion:The stem bark of A. altilis is a potential agent in malaria control which is safe for oral use.

Author Biographies

Adetunji Joseph ALADESANMI, Afe Babalola University, Ado Ekiti, Ekiti State Nigeria.

Department of Pharmacognosy and Herbal Medicine, College of Pharmacy, Afe Babalola University, Ado Ekiti, Ekiti State Nigeria.

Professor

Ogu Emmanuel ODIBA, Obafemi Awolowo University, Ile-Ife

Department of Pharmacognosy, Faculty of Pharmacy, Obafemi Awolowo

University, Ile-Ife, Osun State, Nigeria

Research Student

Samuel Akintunde ODEDIRAN, Obafemi Awolowo University, Ile-Ife

Department of Pharmacognosy,

Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria

Senior Lecturer

Ayodeji Oluwabunmi ORIOLA, Obafemi Awolowo University

Drug Research and Production Unit, Faculty of Pharmacy, Obafemi Awolowo

University, Ile-Ife, Osun State, Nigeria

Research Fellow

References

Adebajo, A.C., Odediran, S.A., Nneji, C.M., Iwalewa, E.O., Rukunga, G.M., Aladesanmi, A.J., Gathirwa, J.W., Ademowo, O.G., Olugbade, T.A., Schmidt, T.J. and Verspohl, E.J. (2013). Evaluation of Ethnomedical Claims IIa: Antimalarial Activities of Gongronema latifolium Root and Stem. Journal of Herbs, Spices and Medicinal Plants, 19:1–22. DOI: 10.1080/10496475.2012.734012 http://www.tandfonline.com/loi/whsm20

Adewole, S.O. and Ojewole, J.O. (2007). Hyperglycaemic Effect of Artocarpus communis Forst. (Moraceae) root bark aqueous extract in Wistar rats. Cardiovascular Journal of Africa, 18:221–7. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4170227/

Agbedahunsi, J.M., Elujoba, A.A., Makinde, J.M. and Oduola, A.M.J. (1998). Antimalarial activity of Khaya grandifoliola stem bark. Pharmaceutical Biology, 36: 8-12. https://www.tandfonline.com/doi/abs/10.1076/phbi.36.1.8.4613

Ajaiyeoba, E.O., Abalogu, U.I., Krebs, H.C. and Oduala, A.M. (1999). In vivo antimalarial activities of Quassia amara and Quassi undulata plant extracts in mice. Journal of Ethnopharmacology, 67: 321-5. https://pubmed.ncbi.nlm.nih.gov/10617067/

Ajaiyeoba, E. O., Falade, M., Ogbole, O., Okpako, L., and Akinboye, D. (2006). In vivo antimalarial and cytotoxic properties of Annona senegalensis extract. African Journal of Traditional, Complementary and Alternative Medicines, 3: 137-141. http://www.bioline.org.br/request?tc06015

Aladesanmi, A.J., Awe, S.O., Adesanya, S.A. and Bray, D.H. (1988). Antimalarial activity of some Nigerian medicinal plants. In: Drug Production from Natural Products, Proceedings of the Seventh International Symposium on Medicinal Plants (eds. Adesina, S. K.), Medex Publications Ltd., Lagos, 100-104.

Aliyu, F.A. (2013). M. Sc. Thesis, Obafemi Awolowo University, Ile-Ife, Nigeria. 94pp.

Krettli A.U., Andrede – Neto V.F., Maria des Gracas, L, B. and Ferrari-Wanessa M.S (2001). The search for New Antimalarial Drugs from Plants used to treat fever and malarial or plants randomly selected. Memonas do Instituto Ostwaldo Cruz, 96:1033 – 1042. https://www.scielo.br/j/mioc/a/QVcv4wy4tSV7zLq7HwbycZc/?lang=en

Balogun E. A, Adebayo, J. O., Zailani, A. H., Kolawole, O. M and Ademowo, O.G. (2009). Activity of the ethanolic extract of Clerodendrum violaceum leaves against Plasmodium berghei berghei in Mice. Agriculture and Biology Journal of North America 1: 307-312. https://www.researchgate.net/publication/247920577_

Bickii, J., Njifulie, N., Foyere, J.A., Basco, L.K., Ringwald, P. (2000). In vitro antimalarial activity of limonoids from Khaya grandifoliola C.D.C. (Meliaceae). Journal of Ethnopharmacology, 69:27–33. https://pubmed.ncbi.nlm.nih.gov/10661881/

Boonlaksiri, C., Oonanant, W., Kongsaeree, P., Kittakoop, P., Tanticharoen, M. and Thebtaranonth, Y. (2000). An antimalarial stilbene from Artocarpus integer. Phytochemistry 54:415–417. https://pubmed.ncbi.nlm.nih.gov/10897483/

Boonphong, S., Baramee, A., Kittakoop, P. and Puangsombat P. (2007). Antitubercular and antiplasmodial prenylated flavones from the roots of Artocarpus altilis, Chiang Mai Journal of Science, 34, 339–344.

Bowman, W. C. and Rand, M.J. (1980). Chemotherapy of protozoan infections In: Textbook of Pharmacology, Blackwell Scientific Publication, Oxford. 361-365.

Boyom, F. F., Kemgne, E. M., Tepongning, R., Ngouana,V., Mbacham,W. F., Tsamo, E., Zollo,P. H. A., Gut, J., Rosenthal, P. (2009). Antiplasmodial activity of extracts from seven medicinal plants used in malaria treatment in Cameroon. Journal of Ethnopharmacology, 123:483–488. https://pubmed.ncbi.nlm.nih.gov/19442463/

Carvalho, L. H. Brandao, M.G, Santos-Filho, D, Lopes J. L. and Krettli, A. U. (1991). Antimalarial activity from crude extract from Brazilian plants studied in vivo in Plasmodium berghei berghei- infected mice and in vitro against Plasmodium falciparum in culture. Brazilian Journal of Medical and Biological Research, 24 (11): 1113-1123. https://pubmed.ncbi.nlm.nih.gov/1823001/

David F, Tienport P, Devos C, and Sandra P. (2015). Recent Development in GC-MS for Petrochemical Applications, Petroleum, Refining, Environmental Monitoring Technologies. Conference 2015 Book of Abstracts https://www.ilmexhibitions.com/peftec/abstract

Ebiloma G. U., Omale J, and Aminu R. O. (2011). Suppressive, Curative and Prophylactic Potentials of Morinda lucida (Benth) against erythrocytic stage of mice infected with chloroquine sensitive Plasmodium berghei NK-65. Current Journal of Applied Science and Technology. 1(3): 131-140. https://research.tees.ac.uk/en/publications

Gomathi D, Kalaiselvi M, Ravikumar G, Devaki K, and Uma C. (2015). GC-MS analysis of bioactive compounds from the whole plant ethanolic extract of Evolvulus alsinoides (L.) L Journal of Food Science and Technology (2015) Feb; 52(2): 1212–1217. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4325072/

Hakim, A. (2010). The diversity of secondary metabolites from Genus Artocarpus (Moraceae). Nusantara Bioscience, 2:146-156. https://www.semanticscholar.org/paper/

Iwalewa, E.O., Omisore, N.O., Adewunmi, C.O., Daniyan, O.M., Taiwo., B.J., Ngadjui, B.T., Kouam, S.F., Fatokun, O.A., Oluborode, I.O. and Yapna, D.B. (2008b). Elemental compositions, anti-anaemic, antimalarial and antitrichomonal properties of the extract, fractions and some isolated compounds of Harugana madagascariensis stem bark. Planta Medica: 74, 235.

Jagtap U. B. and Bapat, V. A. (2010). Artocarpus: A review of its traditional uses, phytochemistry and pharmacology. Journal of Ethnopharmacology, 129:142-166. https://pubmed.ncbi.nlm.nih.gov/20380874/

Khan M.R., Omoloso A.D. and Kihara M. (2003). Antibacterial activity of Artocarpus heterophyllus. Fitoterapia, 74:501–505. https://pubmed.ncbi.nlm.nih.gov/12837372/

Kimaru, I. W. and Nguyen, H. P. (2014). GC-MS Analyses of an herbal medicinal remedy to identify potential toxic compounds, LG GC Magazine Special Issue October 2014. https://www.chromatographyonline.com/

Li, J., Liu, J., Lan, H., Zheng, M. and Rong, T. (2009), GC-MS analysis of the chemical constituents of the essential oil from the leaves of yaco: Smallanthus sonchifolia, Frontiers of Agriculture in China, 3:40 - 42.

Lorke, D. (1983). A new approach to practical acute toxicity testing. Archives of Toxicology, 54:275–287. https://pubmed.ncbi.nlm.nih.gov/6667118/

Mendis, K., Sina, B., Marchesini, P. and Carter, R. The neglected. (2001). burden of Plasmodium vivax malaria. Journal of Ethnopharmacology, 64: 97-106. https://pubmed.ncbi.nlm.nih.gov/11425182/

Miller, L.H. (1992). The challenge of malaria. Science 257:36–37. https://pubmed.ncbi.nlm.nih.gov/1621092/

Ministerio de Salud de Colombia. (2002). Bolet´ın epidemiol´ogico semanal comportamientoor regiones de la malaria en el. Instituto Nacional de Salud, Sistema de Vigilancia en Salud P´ublica SIVIGILA, Bogota.la

Molnar, I and Horvath, C. (1976). Reverse phase chromatography of polar biological substances: separation of catechol substances by High Performance liquid chromatography, Clinical Chemistry, 22:1497-1502. https://pubmed.ncbi.nlm.nih.gov/8221/

Morita H, Oshimi S, Hirasawa Y, Koyama K, Honda T, Eka-sari W, Indrayanto G, and Zain NC (2007). Cassiarins A and B, novel antiplasmodial alkaloids from Cassia siamea’’. Org. Letters, 9: 3691 – 3693. https://pubmed.ncbi.nlm.nih.gov/17685627/.

Ogbonnia S.O., Mbaka G.O., Anyika E.N., Osegbo O.M., and Igbokwe N.H. (2010). Evaluation of acute toxicity in mice and subchronic toxicity of hydro-ethanolic extract of Chromolaena odorata (L.) King and Robinson (Asteraceae) in rats. Agriculture and Biology Journal of North America, 1: 859-865. https://www.cabdirect.org/cabdirect/abstract/20113247718.

Okonkon, J. E., Ita, B.N. and Udokpoh A. (2006). Antimalarial activities of Uvaria chamae and Hippocratea africana. Annals of Tropical Medicine and Parasitology, 100: 585-590. https://pubmed.ncbi.nlm.nih.gov/16989684/

Onayade A. O. and Adebajo C. A., (2000). Composition of the Leaf Volatile Oil of Murraya koenigi growing in Nigeria. Journal of Herbs, Spices and Medicinal Plants, 7:59-65. https://www.tandfonline.com/doi/abs/10.1300/J044v07n04_07.

Peters W. (1965). Drug resistance in Plasmodium berghei Venke and Lips (1948). I. Chloroquine Resistance Experimental Parasitology, 17:80–87. https://pubmed.ncbi.nlm.nih.gov/5843289/.

Pieme, C.A., Penlap, V.N., Nkegoum, B., Taziebou, C.L., Tekwu, E.M., Etoa, F.X. and Ngongang, J. (2006). Evaluation of acute and subacute toxicities of aqueous ethanolic extract of leaves of Senna alata (L) Roxb (Ceasalpiniaceae). African Journal of Biotechnology, 5(3): 283-289. https://www.researchgate.net/publication/27797313.

Ragasa, C.Y, Ng V.A. Park, J.H., Kim, Dong Woo, Cornelio K., and Shen C. (2014). Chemical Constituents of Artocarpus altilis and Artocarpus odoratissimus. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 5:1081. https://www.semanticscholar.org/

Rukunga, G. and Simons, A. J. (2006). The potentials of plants as a source of antimalarial agents: A review. A paper presented at the Africa Herbal Antimalarial Meeting CDE and ICRAF held in Nairobi, March 20 – 22nd, 2006. Planta Phile Publications, Berlin, Germany, 72.

Suhartati T., Yandri and Hadi S. (2008). The bioactivity test of artonin E from the bark of Artocarpus rigida Blume, European Journal of Scientific Research, 23, 330–337. https://mjcce.org.mk/index.php/MJCCE

Trindade M.B., Lopes J.L.S., Costa A.S. Moreira, A.C.M. Moreira., R.A. Oliva, M.L.V. and Beltramini L.M. (2006). Structural characterization of novel chitin binding lectins from the genus Artocarpus and their antifungal activity, Biochimica et Biophysica Acta 1764: 146–152. https://pubmed.ncbi.nlm.nih.gov/16257591/

Tsuchiya H, Sato M, Miyazaki T, Fujiwara S, Tanigaki S, Ohyama M, Tanaka T. and Linuma M. (1996). Comparative Study of the Antibacterial Activity of Phytochemical Flavanones against Methicillin-Resistant Staphylococcus aureus. Journal of Ethnopharmacology 50(1), 27-34. https://pubmed.ncbi.nlm.nih.gov/8778504/

Vial, H., (1996). Recent development and rationale towards new strategies for malarial chemotherapy. Parasite, 3, 3–23. https://pubmed.ncbi.nlm.nih.gov/8731759/

White N.J. (2008). Plasmodium knowlesi: the fifth human malaria parasite. Clinical Infectious Diseases, 46(2): 172–173. https://pubmed.ncbi.nlm.nih.gov/18171246/

Wernsdorfer W.H. and Trigg P.I (1988). Malaria: principles and practice of malariology. New York, NY, Churchill Livingstone, 1569-1573.

WHO (1993) WHO guidelines for the assessment of herbal medicines. Herbal Grom 28:13–14.

Downloads

Published

2022-08-17

How to Cite

ALADESANMI, A. J., Odiba, O. E., ODEDIRAN, S. A., & Oriola, A. O. (2022). ANTIPLASMODIAL ACTIVITIES OF THE STEM BARK EXTRACT OF ARTOCARPUS ALTILIS FORSBERG. African Journal of Infectious Diseases (AJID), 16(2), 33–45. https://doi.org/10.21010/Ajid v16i2S.5