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Abstract 
 

Background: Coronavirus pandemic, a serious global public health threat, affects the Southern African countries more than 

any other country on the continent. The region has become the epicenter of the coronavirus with South Africa accounting 

for the most cases. To cap the deadly effect caused by the pandemic, we apply a statistical modelling approach to 

investigate and predict COVID-19 incidence.  

Methods: Using secondary data on the daily confirmed COVID-19 cases per million for Southern Africa Development 

Community (SADC) member states from March 5, 2020, to July 15, 2021, we model and forecast the spread of coronavirus 

in the region. We select the best ARIMA model based on the log-likelihood, AIC, and BIC of the fitted models.  

Results: The ARIMA (11,1,11) model for the complete data set was finally selected among ARIMA models based upon the 

parameter test and the Box–Ljung test. The ARIMA(11,1,9) was the best candidate for the training set. A 15-day forecast 

was also made from the model, which shows a perfect fit with the testing set.   

Conclusion: The number of new COVID-19 cases per million for the SADC shows a downward trend, but the trend is 

characterized by peaks from time to time. Tightening up of the preventive measures continuously needs to be adapted in 

order to eradicate the coronavirus epidemic from the population. 
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Introduction 
 

Sixteen countries constitute the Southern Africa Development Community (SADC) Member States; namely 

Angola, Botswana, Eswatini, Comoros, Democratic Republic of Congo (DRC), Lesotho, Madagascar, Malawi, Mauritius, 

Mozambique, Namibia, Seychelles, South Africa, Tanzania, Zambia, and Zimbabwe. The first case of COVID-19 in the 

SADC region was recorded in early March 2020 in South Africa and the numbers have been increasing exponentially 

(WHO, 2020). With the exception of Comoro and Lesotho, other member states had been affected by the epidemic by the 

15th of April 2020 (WHO, 2020). 

The coronavirus pandemic has resulted in complex challenges across the world, and the SADC region has not been 

spared. Various measures have been undertaken by the SADC Member states and these include preparedness and response 

mechanisms, awareness programs, suspension of inbound and outbound flights, suspension of business and tourism travel, 

set up of border and in-country testing centres, social distancing, and cancellation of gatherings, adoption of self-isolation 

and mandatory quarantine for a minimum of fourteen days, and treatment for those that test positive (WHO, 2020). 

The Southern Africa region has been hit hardest by the COVID-19 pandemic in Africa, thus the epicenter of the 

coronavirus in the African continent (Massinga et al. 2020). By February 2021 the SADC region had accounted for half of 
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the reported cases in Africa. Of the five African countries accounting for close to 76% of new infections, three of them are 

members of the SADC namely South Africa, Zambia, and Namibia (UN Economic Commission for Africa, 2020). 

With COVID-19 becoming one of the most serious global public health threats, investigating and predicting 

COVID-19 incidence contributes to the control of its spread. Modelling a future forecast that estimates the regular number 

of confirmed cases enhances the implementation of rules aimed at controlling the spread of COVID-19. Statistical forecast 

models play a role in predicting future epidemic threats, managing of societal, economic, cultural, and public health 

matters. Katoch and Sidhu (2021) predicted the spread and the final size of the COVID-19 epidemic in India using the 

ARIMA model. Singh et al. (2020) predicted the daily confirmed COVID-19 cases for Malaysia using the ARIMA model.  

In Bangladesh, Kundu et al. (2021) forecasted the expected number of total confirmed cases, total confirmed new 

cases, total deaths, and total new deaths in Bangladesh.  

The ARIMA model, generally known as the Box-Jenkins methodology is used for forecasting and analysis in the 

time series approach. We model the number of daily COVID-19 cases per million in the SADC region using the ARIMA 

(p,d,q) models. First, we model for all combined SADC countries than for each of the member countries. We finally 

forecast the spread of the pandemic using data from the three SADC countries (South Africa, Zambia, and Namibia) 

reporting high cases of the COVID-19 pandemic.  

 

 

Materials and Methods 
ARIMA Model 

 

Oftentimes, the ARIMA models are used in the analysis and forecasting of the time series, focusing on the random 

side of the time series. The acronym ARIMA (p,d,q) consist of  three main sections: 

1) Autoregressive models, AR (p) which express the present value   as a linear function in the lagged values of the 

variable. Thus,  

                                                                       (1) 

where denotes the parameters of the autoregressive,  denotes the lag operator,  denotes the error terms, and  

denotes the constant. 

2) Integration, I (d) which indicates the degree to which the variable is stationary. Thus,     

                                                                                (2) 

3) Moving Average, MA (q) which express  the current value of the variable,   as a linear function in the present value of 

the random error term and a number of its lag values. Hence,  

                                                                                (3) 

where denote the parameters of the moving average and denotes the expectation of  (often assumed to equal 0).  

 

Ethical Consideration 

 

No formal ethical approval was obtained for this study because all the data used were from a secondary source. 

 

Estimation of parameters of ARIMA Model 

Process in Stages 

 

The ARIMA models estimation method involves several stages undertaken before making predictions namely the 

identification, estimation, forecasting, and forecasting validation stages. 

(a) Identification stage - where the degree of stationary of the variable is determined using Augmented Dickey-Fuller 

(ADF). Based on the autocorrelation function (ACF) and the partial autocorrelation function (PAC), we first define (d), 

followed by (p) and then (q).  

(b) Estimation stage – were using the Maximum likelihood estimation method and based on Akaike information criterion 

(AIC), the appropriate model is selected after comparing possible models.  

(c) Forecasting stage - where the prediction is made using the final model.  

(d) Forecasting validation stage - where the model is validated on the prediction based on several indicators that represent 

the deviation of the calculated values from the actual values, which are the mean absolute error (MAE), root mean square 

error (RMSE), and mean absolute percentage error (MAPE). The ACF plot ascertains the existence of autocorrelation 

between the residual values. The validity of the prediction is checked using the plots of the difference between the actual 

and the forecast. Table 1 presents the definition of indicators used in assessing the validity of the forecasts and associated 

formulae.  
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Table 1: Definition of indicators, formula and terms used in assessing the validity of forecasts. 

Define terms formula Indicators 

, rror termsE 

umber of lagsN  
Autocorrelation function (ACF) 

ikelihood L aximum value of the M

function 

umber of estimated parametersN 

 

 
Akaike Information Criterion 

(AIC) 

 he forecast valueT  

 he actual valueT 

umber of fitted observedN  

Mean Absolute Error (MAE) 

 

 

Root Mean Square Error 

(RMSE) 

 

 

Mean Absolute Percentages 

Error (MAPE) 

 

Test of stationarity 

 

We test for stationary time series using an Augmented Dickey-Fuller (ADF) test (Dickey and Fuller, 1979). For 

the transformed nonstationary time series into a stationary time series, we adapt the difference or logarithmic 

transformation. Achieving stationary is a precondition for establishing an ARIMA model. 

 

Model identification  

 

Appropriate values of p, d, and q of the ARIMA model were identified as part of model identification. We 

identified the value of d by the number of differentials, the AR and MA from the autocorrelation function (ACF), and the  

partial autocorrelation function (PACF) plot against the lag length, respectively. In addition, some model selection criteria 

such as the Akaike information criterion (AIC), and Bayesian information criteria (BIC) were used. The optimal model was 

chosen based on the smallest value of AIC and BIC (Akaike, 1974).  

After the identification of appropriate values of p and q, the next step was to estimate the parameter of the 

autoregressive and moving average terms included in the model. This was done using the maximum likelihood estimation 

method.  

 

Diagnostic checking 

 

The identification and fitting of the ARIMA model and estimation of the parameters preceded the checking of 

whether the residual series was a white noise using the Ljung-Box Q test. Failure to reject the null hypothesis of white noise 

led to accepting the fitted model.  The Ljung-Box Q statistics is defined as  

 
where, T is the number of observations, s is the length of coefficients to test autocorrelation, r is the autocorrelation 

coefficient for lag k. The Ljung-Box Q statistics follows approximately the chi-square distribution with (k-q) degrees of 

freedom, where q is the number of parameters to be estimated (Ljung and Box, 1978). 

 

Results 
Descriptive statistics 
 

In this study, we used an openly available daily number of confirmed cases of COVID - 19 per million reported by 

Our World in Data (www.ourworldindata/coronavirus-source-data) from 7 March 2020 to 3 August 2021. Table 1 presents 

the summary statistics (including the mean and median). 
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Table 2: Descriptive Statistics for COVID-19 per million cases in the SADC region 

Minimum First Quartile Median Third Quartile Maximum Mean 

0 89.73 251.00 803.69 18663.85 760.03 

 

Results from Table 2 shows that the number of reported daily COVID-19 cases per million in the SADC region 

ranged from 0 to 18663.85 with an average of 760. 03 per million cases reported each day from the 7th of March, 2020 to 

the 3rd of August, 2021. Figure 1 presents a plot of the daily cases, the density plot, normal Q-Q plot and boxplot. We use 

these plots to check for normality of the time series data. 

 
Figure 1: Checking for normality of the time series data. 

 

The density plot and the box plot show that the data is skewed to the right and therefore not normality distributed. 

The normality Q-Q plot also shows some deviation from normality.  

 

Modelling new COVID-19 cases per million for the SADC region 

 

We start by testing for the stationarity of the original time series data and also that of the differenced time series 

data. We do this using the augmented Dickey-Fuller (ADF) test and the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test at 

5% level of significance. Table 2 presents results of the ADF and KPSS tests where ADF test for non-stationary and non-

seasonal and KPSS test for stationary and non-seasonal in the time series data. 
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Table 3: Test for stationarity of the original time series data and the differenced data. 

Tests Cases per million  Differenced cases per million 

ADF -4.3812 (0.01)** -10.808 (0.01)** 

KPSS 5.0306 (0.01) 0.014221 (0.1)** 

 

Table 3 results show that the test for stationarity for the original time series on the number of daily new COVID-

19 cases per million for the SADC region confirmed stationarity (Dickey-Fuller = -4.3812, Lag order = 7, p-value = 0.01). 

However, the KPSS test shows that the original data is non-stationary. The first difference of the data is performed and both 

the ADF and KPSS test show that the differenced series is stationary in its mean and variance at a 5% level.  Therefore we 

adopt d = 1 for  ARIMA (p,d,q) model.  

 

We assessed the performance of a number of fitted ARIMA models based on the ME, RMSE, MAE, and MASE. 

We started off by automatically fitting the ARIMA model for the data. Table 3 presents the result which suggests the 

candidate ARIMA models. 

 

Table 4: Selection of the candidate ARIMA (p,d,q) model. 

Model ME RMSE MAE MASE ACF1 

Auto ARIMA(4,1,4) 69.0079 1101.021 435.1874 0.551116 0.02744 

ARIMA(9,1,9) 67.80244 1020.430 409.638 0.518761 -0.0032 

ARIMA(11,1,11) 62.25194 1005.022 393.7258 0.49861 -0.00592 

 

From Table 4 results, the ARIMA (11,1,11) has the lowest RMSE hence the best candidate to explain the daily COVID-19 

cases per million for the SADC region. We further investigate the fitted model by examining the residuals plot and 

performing the Box-Ljung test. Figure 3 presents residual diagnosis results for the ARIMA (11,1,11) model. 

 



6 

 

 
Figure 2: Residual diagnosis for the ARIMA(11,1,11) model. 

 

From Figure 2, the ACF plot of the residuals from the ARIMA(11,1,11) model shows all autocorrelations to fall within 

the threshold limits, an indication that the residuals are white noise. The Box-Ljung test returns a large p-value 

(  df = 20, p-value = 0.9973), also suggesting that the residuals are white noise. We opt to use a training 

and a test set rather than time series cross-validation because the series is long. 

 

 Training and testing sets 

 

Using the ARIMA models fitted for the cross-validation time series, we set the criteria for the training data at the  

first 90% (observations 1 to 498) and for the test data at the last 10% (observations 499 to 515). Table 4 present results 

from the fitted models ARIMA(9,1,9), ARIMA(11,1,9) and ARIMA(11,1,11), using the training data. The corresponding 

ME, RMSE, MAE, MASE, and ACF1  for each of the fitted models are included.   
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Table 5: The candidate ARIMA models fitted using the training data and their corresponding assessment errors. 

Candidate ARIMA models ME RMSE MAE MASE ACF1 

ARIMA(9,1,9) 66.078 1004.582 385.540 0.5374 -0.00213 

ARIMA(11,1,9) 67.797 990.479 406.899 0.567 -0.00485 

ARIMA(11,1,11)) 62.252 1005.022 393.726 0.499 -0.00592 

 

Results in Table 5 show that the three models meet the requirements of white noise for the residual time series (p-

value > 0.05), thus the RMSE values were compared. An ARIMA(11,1,9)  has the lowest RMSE, and hence the best 

candidate for  the forecasting. The model has high accuracy and outperforms the forecasting accuracy of the other two 

models.  

Table 6 presents the coefficients (estimate, standard error, z-value and p-value) for the ARIMA (11,1,9)  model for 

p=1 to 11 and q=1 to 9,  fitted using the training data. We test the accuracy of the estimated parameters at 5% significance 

level. 

 

Table 6: Estimated parameters and test statistics for the ARIMA (11,1,9) model fitted using  the training data. 

AR(p) and MA(q) 

Models Estimate Std. Error z value Pr(>|z|) 

AR(1) -0.1755 0.21019 -0.8351 0.403666 

AR(2) -0.1417 0.14252 -0.9941 0.320163 

AR(3) -0.3442 0.13824 -2.4897 0.0127865* 

AR(4) -0.3585 0.05584 -6.4207 1.36E-10*** 

AR(5) -0.7355 0.09814 -7.4937 6.69E-14*** 

AR(6) -0.5427 0.17467 -3.1073 0.001888** 

AR(7) 0.1981 0.14059 1.4087 0.158917 

AR(8) -0.4069 0.17538 -2.3203 0.020325* 

AR(9) -0.2583 0.05284 -4.8892 1.01E-06*** 

AR(10) -0.1931 0.09173 -2.1051 0.035283* 

AR(11) 0.0702 0.08440 0.8321 0.405334 

MA(1) -0.9170 0.20841 -4.4000 1.08E-05*** 

MA(2) 0.0252 0.25876 0.0973 0.922452 

MA(3) 0.6393 0.12613 5.0680 4.02E-07*** 

MA(4) -0.5061 0.21405 -2.3644 0.01806* 

MA(5) 0.5584 0.09537 5.8550 4.77E-09*** 

MA(6) -0.1260 0.11157 -1.1293 0.258779 

MA(7) -0.5921 0.08531 -6.9405 3.91E-12*** 

MA(8) 0.7162 0.20083 3.5664 0.000362*** 

MA(9) -0.4938 0.18228 -2.7089 0.00675** 

 

The estimated parameters for the fitted models have a magnitude less than one (Table 6). The majority of the fitted 

models were significant at a 5 % significance level, except for the AR(1), AR(2), AR(7), AR(11), MA(2), and MA(6). The 

standard errors for the estimated parameters were relatively small indicating less variation. 

 

Forecasting using the ARIMA (11, 1, 9) model  

 

We carried out forecasting for all the time series data using ARIMA (11,1,9) model. First, we divided the data into 

two sets of the year, "1991" to"2014" as the training data and from "7 march 2021" to "16 July 2021" as the testing data. 

The data from "17 July 2021" to "3 August 2021" were used as an out-sample forecast. The residuals of the chosen models 

were stationary and white noise. Table 6 presents a 15 days forecasting for the daily COVID-19 per million cases using 

ARIMA (11,1,9) model. We present the point forecast and the corresponding 80 % and 95% confidence intervals, for the 

observation numbers 499 to 513. 
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Table 7: 15 day forecasting for the daily COVID-19 per million cases using ARIMA (11,1,9) model. 

Observation No. Point Forecast 80 % [L, U]  95 %[L, U]  

499 1404.11 [104.657, 2703.563] [-583.232, 3391.452] 

500 5748.161 [4443.508, 7052.814] [3752.866, 7743.456] 

501 1680.23 [375.414, 2985.047] [-315.315, 3675.775] 

502 1390.971 [-22.331, 2804.273] [-770.487, 3552.430] 

503 3271.865 [1843.662, 4700.069] [1087.617, 5456.114] 

504 3957.906 [2526.972, 5388.841] [1769.481, 6146.332] 

505 851.2315 [-582.394, 2284.857] [-1341.31, 3043.773] 

506 1756.19 [293.728, 3218.653] [-480.453, 3992.834] 

507 5223.569 [3759.226, 6687.912] [2984.049, 7463.088] 

508 1914.037 [441.259, 3386.814] [-338.382, 4166.455] 

509 1517.278 [27.764, 3006.793] [-760.738, 3795.294] 

510 3175.333 [1685.812, 4664.855] [897.307, 5453.360] 

511 4392.675 [2900.543, 5884.807] [2110.655, 6674.695] 

512 615.8379 [-878.250, 2109.925] [-1669.170, 2900.847] 

513 2112.737 [554.377, 3671.096] [-270.569, 4496.042] 

 

Results in Table 7 show an oscillating trend with the highest peaks expected on the 500th and the 507th days. 

Smaller peaks occurred on the 511th day of the COVID-19 pandemic. The 95% confidence limit of the predicted values 

from "7 march 2021" to "16 July 2021", using the best-fitted models are also presented.  Figure 3 presents the predicted 

values for the forecasted daily COVD-19 per million cases for the fitted model from the training set and the test set. 

 
Figure 3: Forecasted daily COVID-19 per million cases for the fitted model from the training set and the test set. 

Figure 3 shows that all forecasted lines for the training set (ARIMA(11,1,9))  are close to the actual values from the test set, 

which emphasises the quality of the selected models. The up and down trend characterizes the daily COVID-19 cases per 

million.   
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Discussion 
 

The first COVID-19 case in the SADC region was recorded on the 5th of March 2020 in South Africa. We predict 

the spread of COVID-19 in the SADC region using reported daily cases per million from the 7th of March 2020 to the 3rd of 

August 2021. Using time-series data for the 515 observations we provide an appropriate ARIMA model to predict the 

spread of COVID-19 in the SADC region. Candidate models are designed by observing the spikes from the autocorrelation 

function (ACF) and partial autocorrelation function (PACF) charts. The Fitting of several ARIMA models resulted in a 

prediction model whose accuracy in the performance was assessed using RMSEs. We used a training and test set rather 

than the time series cross-validation because the time series was relatively long. 

The use of all data in the analysis provides ARIMA (11,1,11) models that are good for predicting the spread of 

COVID-19 in the SADC region. Further refinement considering the training set (first 90% of the set) led to an ARIMA 

(11,1,9) model as the best model. Use of an ARIMA(11,1,9) model in forecasting 15 days in advance fits well with the test 

(observed) set. An ARIMA (11,1,9) model has a smaller RMSE compared to the ARIMA(11,1,11) model.  

 

Conclusion 
 

Amongst all the ARIMA models, ARIMA (11,1,9) best predicts the spread of COVID-19 in the SADC region 

when cases per million are used. A downward trend characterized by peaks from time to time shows the number of new 

COVID-19 cases per million for the SADC region. The trend suggests a need to continue tightening up the measures that 

help in mitigating the epidemic. These measures include social distancing, wearing of masks, reducing the number of 

people in social gatherings, reducing the movement of people between the borders, and so on. 
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